S.I. Ltd Contract No: 5415

Client: Cairn Homes

Engineer: Waterman Moylan

Contractor: Site Investigations Ltd

Hollybank, Swords, Co. Dublin Site Investigation Report

Prepared by:
Stephen Letch

Issue Date:	12/10/2017
Status	Final
Revision	1

Contents:		Page No.
1.	Introduction	1
2.	Fieldwork	1
3.	Laboratory Testing	3
4.	Ground Conditions	3
5.	Recommendations and Conclusions	4

Appendices:

- 1. Cable Percussive Borehole Logs
- 2. Trial Pit and Dynamic Probe Logs and Photographs
- 3. Laboratory Test Results
- 4. Survey Data

1. Introduction

On the instructions of Waterman Moylan, Site Investigations Ltd (SIL) was appointed to complete a ground investigation at Glen Ellan Road, Swords, County Dublin. The investigation was for a new residential development of the site, Hollybank, and was completed on behalf of the Client, Cairn Homes.

The fieldworks comprised a programme of cable percussive boreholes, trial pits, dynamic probes and California Bearing Ratio tests. All fieldwork was carried out in accordance with Eurocode 7: Geotechnical Design and the IEI Specification & Related Documents for Ground Investigation in Ireland (2006). Laboratory testing has been performed on representative soil samples recovered from the trial pits and these were completed in accordance of BS1377: 1990.

This report presents the factual geotechnical data obtained from the field and laboratory testing with interpretation of the ground conditions discussed.

2. Fieldwork

The geotechnical fieldworks were started and completed in September 2017 and comprised the following:

- 8 No. cable percussive boreholes
- 17 No. trial pits
- 17 No. dynamic probes
- 8 No. California Bearing Ratio tests

2.1. Cable Percussive Boreholes

Cable percussion boring was undertaken at 8 No. locations using a Dando 150 rig and constructed a 200mm diameter borehole. BH02 terminated at 3.00mbgl on a shallow obstruction but the remaining boreholes all terminated at 5.00mbgl or deeper. It was not possible to collect undisturbed samples due to the gravel and cobble content of the strata so bulk disturbed samples were recovered at regular intervals.

To test the strength of the stratum, Standard Penetration Tests (SPT's) were performed at 1.00m intervals in accordance with BS 1377 (1990). In soils with high gravel and cobble content it is appropriate to use a solid cone (60°) (CPT) instead of the split spoon and this was used throughout the testing. The test is completed over 450mm and the cone is driven 150mm into the stratum to ensure that the test is conducted over an undisturbed zone. The cone is then driven the remaining 300mm and the blows recorded to report the N-Value. The report shows the N-Value with the seating and test 75mm incremental blows listed in brackets

5415 - Hollybank Swords, Co. Dublin

(e.g. BH01 at 1.00mbgl where N=17-(1,2/3,3,5,6)). Where refusal of 50 blows across the test

zone was encountered was achieved during testing, the penetration depth is also reported

(e.g. BH01 at 5.00mbgl where N=50-(25 for 10mm / 50 for 5mm)).

The logs are presented in Appendix 1.

2.2. Trial Pits and Dynamic Probes

17 No. trial pits were completed using a wheeled excavator and were logged by SIL

geotechnical engineer. Representative disturbed bulk samples were recovered as the pits

were excavated and they were returned to the laboratory for geotechnical testing.

Adjacent to the trial pits, dynamic probes were completed using a track mounted Competitor

130 machine. The testing complies with the requirements of BS1377: Part 9 (1990) and

Eurocode 7: Part 3. The configuration utilised standard DPH (Heavy) probing method

comprising a 50kg weight, 500mm drop height and a 43.7mm diameter (90°) cone. The

number of blows required to drive the cone each 100mm increment into the sub soil is

recorded in accordance with the standards. The dynamic probe provides no information

regarding soil type or groundwater conditions.

The dynamic probe results can be used to analyse the strength of the soil strata encountered

by the probe. 'Proceedings of the Trinity College Dublin Symposium of Field and Laboratory

Testing of Soils for Foundations and Embankments' presents a paper by Foirbart that is most

relevant to Irish soil conditions and within this paper the following equations were included:

Granular Soils: DPH N₁₀₀ x 2.5 = SPT N value

Cohesive Soils: $C_u = 15 \times DPH N_{100} + 30 \text{ kN/m}^2$

These equations present a relationship between the probe N₁₀₀ value and the SPT N value

for granular soils and the undrained shear strength of cohesive soils.

The trial pit and dynamic probes results are presented on one log and are presented in

Appendix 2 with the trial pit photographs.

2.3. California Bearing Ratio tests

At 8 No. locations, undisturbed cylindrical mould samples were taken to complete California

Bearing Ratio tests in the laboratory. The results facilitate the designing of the access roads

and associated areas. These tests were completed to BS1377: 1990: Part 4, Clause 7

'Determination of California Bearing Ratio'. The results are presented as part of Appendix 3

with the laboratory test data.

2

2.4. Surveying

Following the completion of the works, a survey of the exploratory hole locations was completed using a GeoMax GPS Rover. The data is supplied on each individual log and is provided along with a site plan in Appendix 4.

3. Laboratory Testing

Geotechnical laboratory testing is currently ongoing on representative soil samples in accordance with BS 1377 (1990). Testing included:

- 3 No. Moisture content
- 3 No. Atterberg limits
- 3 No. Particle size gradings
- · 3 No. pH, sulphate and chloride content

Environmental testing was completed by ALS Environmental Ltd. and consisted of the following:

3 No. Rilta Analysis

The laboratory test results are presented in Appendix 4.

4. Ground Conditions

4.1. Overburden

A generalised summary of the ground profile at BH01 is shown below. Reference should be made to the individual borehole and trial pit records in Appendices 1 and 2 for the full strata information at specific locations.

0.00m: TOPSOIL.

0.50m: Stiff grey brown sandy slightly gravelly silty CLAY with low cobble content.

• 2.50m: Very stiff black sandy slightly gravelly silty CLAY with low cobble content.

• 4.80m: Obstruction - possible boulders.

5.00m: Borehole terminated due to obstruction.

MADE GROUND was not recorded in the boreholes but was recorded to shallow depths at TP05 and TP14 (0.70mbgl) but was also recorded to greater depths in TP17 to 1.90mbgl. The MADE GROUND generally consists of cohesive soils with cobbles and boulders and timber, plastic, red brick and concrete fragments.

The natural overburden deposits are of glacial origin and the particle size gradings display characteristic poorly-graded 'straight-line' profiles for the glacial material. The trial pits did encounter some granular soils to the North of the site but was not recorded to the South.

4.2. Groundwater

Groundwater details in the boreholes and trial pits during the fieldworks are noted on the logs in Appendices 1 and 2. Groundwater was encountered in seven of the eight boreholes ranging in depth from 2.40mbgl to 5.80mbgl. Water was also recorded in TP01 and TP02 at 2.30mbgl and 2.70mbgl respectively.

5.0. Recommendations and Conclusions

Please note the following caveats:

The recommendations given and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between the exploratory hole locations or below the final level of excavation, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for adjacent unexpected conditions that have not been revealed by the exploratory holes. It is further recommended that all bearing surfaces when excavated should be inspected by a suitably qualified Engineer to verify the information given in this report.

Excavated surfaces in clay strata should be kept dry to avoid softening prior to foundation placement. Foundations should always be taken to a minimum depth of 0.50mBGL to avoid the effects of frost action and possible seasonal shrinkage/swelling.

If it is intended that on-site materials are to be used as fill, then the necessary laboratory testing should be specified by the Client to confirm the suitability. Also, relevant lab testing should be specified where stability of side slopes to excavations is a concern, or where contamination may be an issue.

5.1. Shallow Foundations

Due to the unknown depth of foundation and no longer-term groundwater information, this analysis assumes the groundwater will not influence the construction or performance of these foundations.

The boreholes recorded firm brown or grey sandy gravelly silty CLAY with low cobble content at 1.00mbgl. The SPT test results are generally consistent with values between 10 and 12 recorded at 6 locations with BH01 (17) and BH03 (27) recording higher N-values. Therefore, for the analysis an N-value of 10 was chosen for the purposes of design in this stratum, in accordance with Eurocode 7 (EC 7).

Using an equation proposed by Stroud and Butler, the SPT N-value can be used to calculate the shear strength and this is Cu=5N. Therefore, using the value of 10, this indicates that the undrained shear strength of the CLAY is 50kN/m². This can be used to calculate the allowable bearing capacity (ABC) and using a factor of safety of 3 an ABC of 90kN/m² would be anticipated.

The trial pits and the probes show that the soil does strengthen between 1.00mbgl and 2.00mbgl and therefore, if these capacities are too low then the foundations could be placed on the stiffer soils between 1mbgl and 2mbgl.

The following assumptions were made as part of these analyses. If any of these assumptions are not in accordance with detailed design or observations made during construction these recommendations should be re-evaluated.

- The foundation is to be 1m wide.
- Foundations are to be constructed on a level formation of uniform material type (described above).
- All man-made or filled material is to be removed prior to construction.
- The bulk unit weight of the material in this stratum has a minimum density of 19kN/m³.
- Based on groundwater observations this analysis assumes the groundwater will not influence the construction or performance of these foundations.
- All founding strata to be inspected by a suitably qualified Engineer prior to pouring the foundations.

The trial pits indicate that excavations in the cohesive soils should be stable for a short while at least. However, regular inspection of temporary excavations should be completed during construction to ensure that all slopes are stable. If granular soils are encountered then the stability any excavation wall will reduce and therefore temporary support should be used on any excavation that will be left open for an extended period.

5.2. Groundwater

The caveats below relating to interpretation of groundwater levels should be noted:

There is always considerable uncertainty as to the likely rates of water ingress into excavations in clayey soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water.

Furthermore, water levels noted on the borehole and trial pit logs do not generally give an accurate indication of the actual groundwater conditions as the borehole or trial pit is rarely left open for sufficient time for the water level to reach equilibrium.

Also, during boring procedures, a permeable stratum may have been sealed off by the borehole casing, or water may have been added to aid drilling. Therefore, an extended period of groundwater monitoring using any constructed standpipes is required to provide more accurate information regarding groundwater conditions. Finally, groundwater levels vary with time of year, rainfall, nearby construction and tides.

Pumping tests would be required to determine likely seepage rates and persistence into excavations taken below the groundwater level. Deep trial pits also aid estimation of seepage rates.

As discussed previously there were water strikes in seven of the boreholes and two of the trial pits. These strikes were all recorded at depth though with the shallowest water strike at 2.30mbgl in TP01 and this was recorded as a seepage. There is always considerable uncertainty as to the likely rates of water ingress into excavations in cohesive soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water. However, based on this information at the exploratory hole locations to date, it is considered likely that any seepages into excavations of the CLAY will be slow. If granular soils are encountered then the possibility of water ingressing into an excavation increases.

If groundwater is encountered during excavations then mechanical pumps will be required to remove the groundwater from sumps. Sumps should be carefully located and constructed to ensure that groundwater is efficiently removed from excavations and trenches.

5.3. Pavement Design

The summary of the CBR test results in Appendix 3 indicates values generally between 6.2% and 7.7%.

The CBR tests samples were collected at 0.60mbgl and inspection of the formation strata should be completed prior to construction of the pavement. Once the exact formation levels are finalised then additional in-situ testing could be completed to assist with the detailed pavement design.

5.4. Contamination

Environmental testing was carried out on three samples from the investigation and the results are shown in Appendix 3. For material to be removed from site, Rilta testing was carried out to determine whether the material on the site could be accepted as 'inert material' by an Irish landfill. The results were compared with the published waste acceptance limits of BS EN 12457-2.

The disposal suite results indicate that the material would generally be able to be treated as Inert Waste. However, discussions about the acceptance of the material must be undertaken with individual landfills before removal of any material from site.

Only three samples were tested for analysis and although no major contamination was noted at the fieldwork locations, any localised contamination may have been missed. Therefore, a testing regime designed by an environmental engineer should be designed on any material that is to be removed from site to ensure that the material stays within the landfill acceptance criteria.

5.5. Aggressive Ground Conditions

The chemical tests results in Appendix 3 indicate a general pH value between 8.30 and 8.47, which is close to neutral and below the level of 9, therefore no special precautions are required.

The maximum value obtained for water soluble sulphate was 126mg/l as SO_3 . The BRE Special Digest 1:2005 - 'Concrete in Aggressive Ground' guidelines require SO_4 values and after conversion ($SO_4 = SO_3 \times 1.2$), the maximum value of 151mg/l shows Class 1 conditions and no special precautions are required.

Appendix 1 Cable Percussive Borehole Logs

Contra		Cable Percussion	n Bo	orel	nole	Log	g		С	orehole BH0	
Contrac	ot:	Hollybank	Easting	g:	717608	3.793		Date Started:	15/09	9/2017	
Locatio	n:	Swords, Co. Dublin	Northin	ıg:	748363	3.439		Date Completed:	15/09	9/2017	
Client:		Cairn Homes	Elevati	on:	7.25			Logged By:	S. Le	tch	
Engine	er:	Waterman Moylan	Rig Typ	oe:	Dando	150		Drilled By:	M. C	unniffe	
Depth		Stratum Description	Legend		(mOD)			and Insitu Tes		Water Strike	Backfil
Scale	Depth	TOPSOIL.		Scale	Depth	Depth	Туре	Result		Strike	
0.5 -	0.50	Stiff grey brown sandy slightly gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Cobbles are subangular to subrounded of limestone.		7.0 — - - 6.5 — - - - 6.0 —	6.75	1.00 1.00	C B	N=17 (1,2/3,; MC08	3,5,6)		
1.5 -				5.5 -		2.00 2.00	C B	N=21 (2,2/3,4 MC09	5,6,7)		
3.0 —	2.50	Very stiff black sandy slightly gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Cobbles are subangular to subrounded of limestone.		4.5	4.75	3.00 3.00	СВ	N=46 (3,7/10,11,1; MC10	3,12)	•	
4.0 —				3.5		4.00 4.00	C B	N=47 (5,9/10,12,1: MC11	2,13)		
5.0	4.80 5.00	Obstruction - possible boulder. End of Borehole at 5.00m	0 0	2.5	2.45 2.25	5.00	С	50 (25 for 10r for 5mm			
5.5 -				1.5 — - -							
6.5				1.0 — - - - 0.5 —							
7.0				0.0							
7.5 -				-0.5 —							
8.5				-1.0 							
9.0				-1.5 — 							
9.5 —				-2.0 — -2.5 —							
				<u> </u>							
		Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed: Date: Hole Depth: Water Depth: Popph: If yellow the poph: If ye	Install			Backfill: To: T	ype: Te	Remarks: ermination due to bot ostruction.	ulder	Legend: B: Bulk D: Disturb U: Undistr ES: Enviro C: Cone S S: Split sp	urbed onmental SPT

Contract No: 5415	Cable Percussion	n Bo	orel	nole	Lo	g		C	orehole BH0	
Contract:	Hollybank	Easting):	717663	3.420		Date Started:	15/09)/2017	
Location:	Swords, Co. Dublin	Northin	g:	748294	4.172		Date Completed:	15/09)/2017	
Client:	Cairn Homes	Elevation	on:	9.42			Logged By:	S. Le	S. Letch	
Engineer:	Waterman Moylan	Rig Typ	e:	Dando	150		Drilled By:	M. Cı	unniffe	
Depth (m)	Stratum Description	Legend	Legend Level (mOD) Samples and Insitu Te		and Insitu Tes	ts	Water	Backfill		
Scale Depth	TOPSOIL.		Scale	Depth	Depth	Туре	e Result		Strike	
0.5	Firm becoming stiff grey sandy gravelly clayey SILT with low cobble content. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Cobbles are subangular to subrounded of limestone. Obstruction - possible boulder. End of Borehole at 3.00m	**************************************	9.0 —	6.72 6.42	1.00 1.00 2.00 2.70 3.00	СВ В С	N=11 (1,1/2,2 MC05) N=24 (2,2/4,4 MC06) MC07 50 (25 for 10r for 5mm)	5,7,8) nm/50		
	Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth: Sealed: Date: Hole Depth: D	Install From: To					Remarks: Termination due to botobstruction.	ulder	Legend: B: Bulk D: Disturb U: Undistr ES: Envin C: Cone S S: Split sp	urbed onmental SPT

Contra		Cable Percussio	n Bo	orel	nole	Lo	g		С	orehole BH0	
Contrac	ot:	Hollybank	Easting	g:	717845	5.956		Date Started:	21/09	9/2017	
Locatio	n:	Swords, Co. Dublin	Northin	ıg:	748256.318		Date Completed:	21/09	9/2017		
Client:		Cairn Homes	Elevati	on:	5.94			Logged By:			
Engine	er:	Waterman Moylan	Rig Typ	oe:				Drilled By:			
Depth		Stratum Description	Legend		(mOD)			and Insitu Tes		Water Strike	Backfi
Scale	Depth	TOPSOIL.		Scale	Depth	Depth	Туре	Result		Strike	
1.0 — 1.5 —	0.502.105.005.50	Stiff grey sandy slightly gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Cobbles are subangular to subrounded of limestone. Very stiff black sandy slightly gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Cobbles are subangular to subrounded of limestone. Obstruction - possible boulder. End of Borehole at 5.50m		5.5	5.443.840.940.44	1.00 1.00 2.00 2.00 3.00 3.00 4.00 5.00	Св Св Св С	N=27 (2,4/5, MC36 N=30 (2,3/6, MC37 N=34 (3,4/5,9,10 MC38 N=41 (2,5/8,10,11 MC39 50 (4,20/50 40mm)	7,8,9) ,10)		
8.0				-2.0							
8.5				-2.5 —							
9.0				-3.0 —							
				- - 25 -							
9.5 —				-3.5 — - - -							
		Objection W. L. Communication of the Communication	I			2-1-62				le:	
		Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth: Date: Hole Depth: Water Details: 5.00 5.50 01:00 2.40 2.00 - 21/09 5.50 5.00	Install From: To					Remarks: ermination due to bot bstruction.		Legend: - B: Bulk - D: Disturb - U: Undist - ES: Envir - C: Cone S - S: Split sp	urbed onmenta SPT

Contract No: 5415	Cable Percussion	n Bo	orel	nole	Lo	g		С	orehole BH0			
Contract:	Hollybank	Easting	j:	717631	1.220		Date Started:	14/09	9/2017			
Location:	Swords, Co. Dublin	Northin	g:	748202	2.211		Date Completed:	14/09	9/2017			
Client:	Cairn Homes	Elevation: 9.		9.92 Logged By:								
Engineer:	Waterman Moylan	Rig Typ	oe:	Dando	150		Drilled By:	M. Cunniffe				
Depth (m)	Stratum Description	Legend		(mOD)					and Insitu Tes		Water Strike	Backfi
1.0	Firm brown sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Firm becoming stiff grey sandy slightly gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Cobbles are subangular to subrounded of limestone. Very stiff black sandy slightly gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Cobbles are subangular to subrounded of limestone. Obstruction - possible boulder. End of Borehole at 5.00m	0	Scale 9.5 9.0 8.5 7.5 7.0 6.5 5.0 4.0 3.5 4.0 3.5 2.5 3.0 2.5 3.0 2.5 3.0 3.	9.42 8.42 5.22 4.92	1.00 1.00 2.00 2.00 3.00 4.00 4.00	СВСВССВ	N=10 (1,1/1,3 MC01 N=13 (2,1/2,3 MC02 N=23 (2,2/3,3 MC03 N=33 (4,6/7,8 MC04 50 (25 for 10r for 10mr	2,3,4) 2,4,5) 5,7,8) mm/50	Outro Control of the			
8.0 -			2.0 — - - - 1.5 —									
9.0			1.0									
	Chiselling: Water Strikes: Water Details:	Install	ation:		Backfill:		Remarks:		Legend:			
		From: To			To:		ermination due to bot betruction.	ulder	B: Bulk D: Disturb U: Undistu ES: Enviro C: Cone S S: Split sp	urbed onmental SPT		

Contract No: 5415	Cable Percussion	n Bo	orel	nole	Log	3		C	orehole BH0	
Contract:	Hollybank	Easting):	717822	2.927		Date Started:	20/09	9/2017	
ocation:	Swords, Co. Dublin	Northin	g:	748206	5.474		Date Completed:	21/09	9/2017	
Client:	Cairn Homes	Elevation	on:	7.67			Logged By:			
Engineer:	Waterman Moylan	Rig Typ	e:				Drilled By:			
Depth (m)	Stratum Description	Legend		(mOD)			and Insitu Tes		Water Strike	Backt
Scale Depth	TOPSOIL.		Scale 7.5 -	Depth	Depth	Туре	Result		Strike	
0.5	Firm becoming stiff grey sandy slightly gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Cobbles are subangular to subrounded of limestone. Stiff becoming very stiff black sandy slightly gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Cobbles are subangular to subrounded of limestone. End of Borehole at 6.00m		7.0 — 6.5 — 6.0 — 5.5 — 4.5 — 3.5 — 2.5 — 1.5 — 1.0 — 1.0 —	7.17 5.27	1.00 1.00 2.00 2.00 3.00 3.00 4.00 4.00 5.00 6.00 6.00	CB CB CB	N=11 (1,1/2,2 MC30 N=22 (1,3/4,5 MC31 N=29 (2,4/5,7 MC32 N=33 (3,4/6,8 MC33 N=42 (2,5/8,10,12 MC34 N=53 (3,6/9,12,14 MC35	5,6,7) 7,8,9) 5,9,10)		
7.5	Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed: Date: Hole Depth: Depth: <td>Install From: To</td> <td></td> <td><u> </u></td> <td></td> <td></td> <td>Remarks:</td> <td>ed</td> <td>Legend: -B: Bulk D: Disturt U: Undist ES: Envir</td> <td>urbed onment</td>	Install From: To		<u> </u>			Remarks:	ed	Legend: -B: Bulk D: Disturt U: Undist ES: Envir	urbed onment

Contract No: 5415	Cable Percussion	n Bo	orek	nole	Lo	g		C	orehole BH0	
Contract:	Hollybank	Easting	j:	717849	9.380		Date Started:	19/09	9/2017	
Location:	Swords, Co. Dublin	Northin	g:	748120).667		Date Completed:	19/09	9/2017	
Client:	Cairn Homes	Elevation	on:	13.46			Logged By:			
Engineer:	Waterman Moylan	Rig Typ	e:				Drilled By:			
Depth (m)	Stratum Description	Legend		(mOD)	Sa	mples	and Insitu Tes	ts	Water	Backf
Scale Depth	TOPSOIL.		Scale	Depth	Depth	Туре	Result		Strike	
0.5 - 0.50	Firm grey sandy slightly gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Cobbles are subangular to subrounded of limestone.		13.0 — 	12.96	1.00 1.00	СВ	N=12 (1,1/2,; MC18 N=21 (2,2/4,6 MC19			
2.20	Stiff brown sandy slightly gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Cobbles are subangular to subrounded of limestone.		11.0 —	11.26	3.00 3.00 3.00	B C B	MC19 N=28 (2,3/5,6 MC20	6,8,9)		
4.0 — 4.50	Very stiff black sandy slightly gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is		9.5 —	8.96	4.00 4.00	C B	N=36 (3,5/7,9,10, MC21	,10)		
5.0 —	angular to subrounded, fine to coarse of limestone. Cobbles are subangular to subrounded of limestone.		8.5 — - - - 8.0 —		5.00 5.00	C B	N=43 (2,6/8,10,12 MC22	2,13)		
6.0 — 6.00	End of Borehole at 6.00m	<u>```</u> `` ≻e <u>`</u> ° €	7.5 — - - - 7.0 —	7.46	6.00 6.00	C B	N=58 (3,8/10,14,16 MC23	6,18)		
7.0 —			6.5 —							
8.0 —			5.5 — - -							
9.0			5.0 — - - - - 4.5 —							
9.5 -			4.0							
	Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed: Date: Hole Depth: Water Details: 5.50 5.40 - 19/09 6.00 5.50	Install From: To					Remarks: erminated at schedule epth.	ed	Legend: - B: Bulk D: Disturb U: Undist ES: Envir C: Cone S S: Split sp	urbed onmenta SPT

Contract No: 5415	Cable Percussion	n Bo	orel	nole	Lo	g		С	orehole BH0			
Contract:	Hollybank	Easting):	717714	1.458		Date Started:	18/09	9/2017			
Location:	Swords, Co. Dublin	Northin	g:	748040).428		Date Completed:	18/09/2017				
Client:	Cairn Homes	Elevation	on:	13.32			Logged By:			S. Letch		
Engineer:	Waterman Moylan	Rig Typ	e:	Dando	150		Drilled By:	M. Cunniffe				
Depth (m)	Stratum Description	Legend	Level	(mOD)	Sa	mples	and Insitu Tes	ts	Water	Backfi		
Scale Depth	TOPSOIL.		Scale	Depth	Depth	Туре	Result		Strike			
0.5 - 0.50	Firm brown slightly sandy slightly gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of	X - 0 X - 0 - 0 - X - 0 - 0 - X - 0 - 0	13.0 —	12.82	0.50	В	MC12 N=12 (1,1/2,2	2.5)				
1.5	limestone. Cobbles are subangular to subrounded of limestone.		12.0 — - - - - - 11.5 —		1.50	В	MC13	2,0,0)				
2.0 - 2.00	Stiff becoming very stiff black sandy slightly gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is angular to subrounded, fine to		11.0	11.32	2.00	СВ	N=19 (2,2/3,4 MC14	4,5,7)				
3.0	coarse of limestone. Cobbles are subangular to subrounded of limestone.		10.5 -		3.00	С	N=35 (3,5/7,9	,9,10)				
3.5 — - - 4.0 — - - - - - - - - - - - - - - - - - - -			9.5		4.00 4.00	C B	N=42 (4,6/8,10,12 MC15	2,12)				
5.0 —		X	8.5 — - - - 8.0 —		5.00 5.00	C B	N=52 (4,8/10,12,14 MC16	4,16)				
6.0 — 6.00	End of Borehole at 6.00m	3 / 2	7.5	7.32	6.00 6.00	C B	50 (3,18/50 25mm) MC17	for				
7.0			6.5 -									
7.5 —			5.5 -									
8.5 —			5.0 —									
9.0			4.5									
9.5 —			4.0 —									
(\$)	Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed: Date: Hole Depth: Water Details: 5.90 6.00 01:00 5.50 5.20 - 18/09 6.00 5.50	Install From: To					Remarks: erminated at schedul epth.	ed	Legend: B: Bulk D: Disturb U: Undist ES: Envir C: Cone S S: Split sp	urbed onmental SPT		

Contract No: 5415	Cable Percussion	n Bo	ret	ole	Log	g		C	orehole BH0	
Contract:	Hollybank	Easting	:	717873	3.791		Date Started:	19/09	9/2017	
ocation:	Swords, Co. Dublin	Northin	g:	748077	7.087		Date Completed:	19/09	9/2017	
Client:	Cairn Homes	Elevation	n:	12.51			Logged By:			
Engineer:	Waterman Moylan	Rig Typ	e:				Drilled By:			
Depth (m)	Stratum Description	Legend		(mOD)	Sar	nples	and Insitu Tes	ts	Water Strike	Backf
Scale Depth	TOPSOIL.		Scale	Depth	Depth	Туре	Result		Strike	
0.5 0.50 1.0 2.00 2.5 2.00 2.5 3.80 4.0 3.80 4.0 4.60 5.0 6.00 6.5 6.00 6.5 7.0 7.5 8.0 9.0	Firm grey sandy slightly gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Cobbles are subangular to subrounded of limestone. Firm becoming stiff brown sandy slightly gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Cobbles are subangular to subrounded of limestone. Very stiff brown black sandy slightly gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Cobbles are subangular to subrounded of limestone. Very stiff black sandy slightly gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Cobbles are subangular to subrounded of limestone. End of Borehole at 6.00m		12.0 — 11.5 — 11.0 — 11.0 — 10.5 — 10.0 — 10	12.01 10.51 8.71 7.91	1.00 1.00 2.00 2.00 3.00 3.00 4.00 4.00 5.00 6.00 6.00	СВ СВ СВ СВ	N=10 (1,2/2,3 MC24 N=12 (1,1/2,3 MC25 N=19 (2,2/3,4 MC26 N=33 (1,4/6,8 MC27 N=44 (6,8/10,11,11 MC28 50 (9,14/50 210mm) MC29	3,4,3) 4,5,7) ,9,10)		
9.5	Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed: Depth: Depth:	Installa					Remarks: erminated at schedulepth.	ed	Legend: B: Bulk D: Disturb U: Undisti ES: Envir	urbed

Appendix 2 Trial Pit and Dynamic Probe Logs and Photographs

	ict No: I15	Trial Pit and Dyn	amic	Pr	obe	Log	_	Trial Pit	
Contra	ict:	Hollybank	Easting:		717593.	680	Date:	26/09/2017	
Locatio	on:	Swords, Co. Dublin	Northing	j:	748316.	185	Excavator:	JCB 3CX	
Client:		Cairn Homes	Elevatio	n:	8.51		Logged By:	M. Kaliski	
Engine	eer:	Waterman Moylan	Dimensi (LxWxD		3.50 x (0.60 x 3.00	Scale:	1:25	
Level	(mbgl)	Stratum Description	Legend		I (mOD)	Samp	es	Probe	Wate
Scale:	Depth	TOPSOIL.	Legend	Scale	: Depth:	Depth	Туре	Flobe	Strik
1.5 - 2.0 - 3.0 - 3.5 - 3.5 -	0.20	Firm light brown sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Grey brown silty sandy angular to rounded, fine to coarse GRAVEL of limestone with high cobble content. Sand is fine to coarse. Cobbles are subangular to subrounded of limestone. Grey silty sandy angular to rounded, fine to coarse GRAVEL of limestone with high cobble content and some clay/silt bands. Sand is fine to coarse. Cobbles are subangular to rounded of limestone. Pit terminated at 3.00m		8.0 - 7.5 · 7.0 - 6.5 ·	- 8.31 - 7.81 - 7.81 - 6.01 - 5.51	2.00	B B	13 15 17 17 17 16 16 17 17 18 23	5
4.0 —				4.5 -	- - - - - - - - - - -				
									\perp
		Termination: Pit Wall Stability: Groundwate		Remark	ks:	,	Key:		•
		Scheduled depth. Pit walls stable. 2.30 Seepa	age -				D = S CBR =	Bulk disturbed Small disturbed Undisturbed CBF nvironmental	₹

Contra 54	ct No: 15	Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pit	
Contra	ct:	Hollybank	Easting:		717632.	703	Date:	26/09/2017	
Locatio	on:	Swords, Co. Dublin	Northing	j:	748256.	648	Excavator:	JCB 3CX	
Client:		Cairn Homes	Elevatio	n:	9.31		Logged By	M. Kaliski	
Engine	er:	Waterman Moylan	Dimensi (LxWxD		3.50 x (0.60 x 3.00	Scale:	1:25	
Level	(mbgl)	Stratum Description	Legend	T	I (mOD)	Samp	es	Probe	Wate
Scale:	Depth	TOPSOIL.	Legend	Scale	: Depth:	Depth	Туре	Flobe	Strik
1.0 — 1.5 — 2.0 — 3.5 — 4.0 — 4.0 —	0.20	Firm light brown sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Grey brown silty sandy subangular to rounded, fine to coarse GRAVEL of limestone with high cobble and low boulder content. Sand is fine to coarse. Cobbles and boulders are subangular to subrounded of limestone (up to 500mm diameter). Grey brown silty sandy subangular to rounded, fine to coarse GRAVEL of limestone with high cobble and low boulder content and dark grey clay bands. Sand is fine to coarse. Cobbles and boulders are subangular to subrounded of limestone (up to 500mm diameter). Pit terminated at 3.00m		9.0 - 8.5 · 7.5 · 6.5 ·	9.11	2.00	B B	12 16 23 26 28 33	•
4.5	-			4.5	- - - - -				
	7	Termination: Pit Wall Stability: Groundwate		Remark	KS:		Key:	South all a transfer in	
(8	1	Scheduled depth. Pit walls stable. 2.70 Seepa	ge -				D = S CBR =	Bulk disturbed Small disturbed Undisturbed CBF nvironmental	₹

Contra 54	ct No: ·15	Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pit I	
Contra	ct:	Hollybank	Easting:		717726.	797	Date:	27/09/2017	
ocatio	on:	Swords, Co. Dublin	Northing	j:	748227.	917	Excavator:	JCB 3CX	
Client:		Cairn Homes	Elevatio	n:	9.22		Logged By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimensi (LxWxD		3.50 x (0.60 x 3.00	Scale:	1:25	
Level	(mbgl)	Stratum Description	Legend		I (mOD)	Sampl	es	Probe	Wate
Scale:	Depth			Scale	: Depth:	Depth	Type II ₁		Strik
1.5 — 2.0 — 2.5 —	1.70	Firm brown slightly sandy gravelly silty CLAY with high cobble and boulder content. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Cobbles and boulders are angular to subangular of limestone (up to 400mm diameter). Firm brown slightly sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Grey brown silty sandy subangular to rounded, fine to coarse GRAVEL of limestone with high cobble coarse GRAVEL of limestone with high cobble		9.0 - 8.5 · 7.5 ·	9.02	2.00	B B	12 15 24 23 18 20 26 28 35	
3.0 —	3.00	content and frequent clay bands. Sand is fine to coarse. Cobbles are subangular to rounded of limestone. Pit terminated at 3.00m		6.5	- - - - 6.22	2.80	В		
- - -				6.0 -	- - -				
3.5 — — — 4.0 —				5.5	- - - - -				
4.5 —				5.0 - 4.5 ·	- - - - -				
		Termination: Pit Wall Stability: Groundwate	r Rate [.]	Remark	KS:		Key:		
		Scheduled depth Pit walls stable. Dry	-	.omair			B = Bt D = Sr CBR = U	ılk disturbed nall disturbed ndisturbed CBR vironmental	

Contra 54	ct No: 15	Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pit	
Contra	ct:	Hollybank	Easting:		717802.	210	Date:	27/09/2017	
Locatio	on:	Swords, Co. Dublin	Northing	j :	748276.	115	Excavator:	JCB 3CX	
Client:		Cairn Homes	Elevatio	n:	6.04		Logged By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimensi (LxWxD		3.50 x (0.60 x 3.00	Scale:	1:25	
Level	(mbgl)	Stratum Description	Legend		(mOD)	Sample	es	Probe	Wate
Scale:	Depth	TOPSOIL.		Scale:	Depth:	Depth	Type 1		Strik
-	0.20	Firm brown sandy silty CLAY. Sand is fine to coarse.			5.84		2 3 7		
0.5 —			× × × × × × × × × × × × × × × × × × ×	5.5	_			10 17 17	
1.0	0.80	Firm grey brown sandy slightly gravelly silty CLAY with low cobble content and frequent pockets of gravel. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Cobbles are		5.0 –	5.24	1.00	В	19 25 35	
-	1.30	subrounded to rounded of limestone. Stiff grey brown slightly sandy gravelly silty CLAY with high cobble and boulder content. Sand is fine to			4.74				
1.5 -	1.80	coarse. Gravel is angular to subrounded, fine to coarse of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter).		4.5	4.24	1.50	В		
2.0 —	1.00	Stiff becoming very stiff grey sandy slightly gravelly silty CLAY with high cobble and boulder content. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter).		4.0 -	- 7.24 	2.20	В		
2.5 —		, and the second		3.5	_				
3.0 —	3.00	Pit terminated at 3.00m		3.0 –	3.04				
-	-				_				
3.5 -	-			2.5	_				
4.0 —	-				_				
-				2.0 -					
4.5 —				1.5 -					
-					- - -				
		Termination: Pit Wall Stability: Groundwate	Rate: F	Remark	(s:		Key:		
		Scheduled depth Pit walls stable. Dry	-	,			D = S CBR = l	ulk disturbed mall disturbed Jndisturbed CBR vironmental	

	ct No: 15	Trial Pit and Dyna	amic	: Pr	obe	Log			Trial Pit I	
Contra	ct:	Hollybank	Easting	:	717810.	993	Date:	2	27/09/2017	
ocatio	on:	Swords, Co. Dublin	Northin	g:	748222.	897	Excava	ator:	JCB 3CX	
lient:		Cairn Homes	Elevation	n:	7.45		Logged	d By:	M. Kaliski	
ngine	er:	Waterman Moylan	Dimens (LxWxD		3.50 x (0.60 x 3.0	0 Scale:		1:25	
_evel	(mbgl)	Stratum Description	Legend	Leve	l (mOD)	Samp	oles		robe	Wa
Scale:	Depth	TOPSOIL.	Logonia	Scale	: Depth:	Depth	Туре	Ia	1000	Stri
	0.20	MADE GROUND: dark brown sandy gravelly silty clay with some pottery fragments. Grey brown silty sandy subangular to rounded, fine to coarse GRAVEL of limestone with high cobble and medium boulder content. Sand is fine to coarse. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Stiff grey sandy slightly gravelly silty CLAY with high cobble and low boulder content. Sand is fine to coarse. Gravel is subangular to subrounded, fine to coarse of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter).		7.0 - 6.5 - 5.5 - 5.0 -	5.35	2.00	ВВВ	2 2 13	20 20 22 23 24 22 26 28 35	
3.0 —	3.00	Pit terminated at 3.00m		4.5	4.45					
3.5 — - -				4.0 -						
4.0 —				3.5	- - -					
- 4.5 — - - -				3.0 -						
				2.5						
		Termination: Pit Wall Stability: Groundwater Scheduled depth Pit walls stable. Dry	r Rate:	Remar -	ks:		Ke B =	= Bulk	disturbed	
6									l disturbed isturbed CBR inmental	

Contra 54	ct No:	Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pit	
Contra	ct:	Hollybank	Easting:		717625.	987	Date:	26/09/2017	
Locatio	on:	Swords, Co. Dublin	Northing	j:	748161.	701	Excavator:	JCB 3CX	
Client:		Cairn Homes	Elevatio	n:	10.93		Logged By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimensi (LxWxD		3.50 x (0.60 x 3.00	Scale:	1:25	
	(mbgl)	Stratum Description	Legend	Level	(mOD)	Sample		Probe	Wate
Scale:	Depth 0.20	TOPSOIL.		Scale	Depth:	Depth -	Type 2 4		
0.5 —	-	Firm brown slightly sandy gravelly silty CLAY with high cobble content. Sand is fine to coarse. Gravel is subangular to rounded, fine to coarse of limestone. Cobbles are subrounded to rounded of limestone.		10.5 -			2 2 2 3		
-	0.80	Firm becoming stiff light brown slightly sandy slightly			10.13		3 2 2		
1.0 — - -		gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded, fine to coarse of limestone.		10.0 –	_	1.00	B 2 3 5 6		
1.5 —	1.50	Stiff becoming very stiff brown sandy slightly gravelly silty CLAY with high cobble content. Sand is fine to coarse. Gravel is subangular to rounded, fine to	× × · · · · · · · · · · · · · · · · · ·	9.5 -	9.43		9 7 8 7		
2.0 —		coarse of limestone. Cobbles are subangular to rounded of limestone.		9.0 –	_	2.00	B 1	1 1 13	
2.5 —				8.5 -	_		10	16 12 1	
3.0 —	3.00	Pit terminated at 3.00m		8.0 -	7.93		1		
-				7.5 -				12 14 20	
3.5 — - -									
4.0 —				7.0 -					
- 4.5 —				6.5 -					
-				6.0 -					
		Termination: Pit Wall Stability: Groundwate	r Rate: F	Remark	(S:		Key:		
		Scheduled depth. Pit walls stable. Dry	-				B = Bu D = Sn CBR = U	ilk disturbed nall disturbed ndisturbed CBR vironmental	

Contract 54		Trial Pit and Dyna	amic	Pr	obe	Log			Trial Pit I	
Contrac	ct:	Hollybank	Easting:		717663.	978	Date	:	26/09/2017	
Locatio	n:	Swords, Co. Dublin	Northing):	748112.4	404	Exca	vator:	JCB 3CX	
Client:		Cairn Homes	Elevation	n:	14.07		Logg	jed By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimensi (LxWxD		3.50 x (0.60 x 3.00	Scale	e:	1:25	
Level		Stratum Description	Legend		l (mOD)	Sample			Probe	Water Strike
Scale:	Depth	TOPSOIL.		Scale 14.0 -		Depth	Туре	1		Suike
0.5 —		Firm light brown sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded, fine to coarse of limestone.		13.5	13.87			1 2 2 2 1 2 3		
1.0 —		Grey brown silty sandy subangular to rounded, fine to coarse GRAVEL of limestone with high cobble and boulder content. Sand is fine to coarse. Cobbles and boulders are subangular to subrounded of limestone (up to 400mm diameter).		13.0 -	- 13.17 	1.00	В	3 8	16 22 23 25	
1.5 —				12.5	- - - -				35	
2.0 —				12.0 -	- - - -					
2.5 —				11.5	- - - -	2.50	В			
3.0 —	3.00	Pit terminated at 3.00m	6.0 X 2 X 2 X	11.0 -	11.07					
3.5 —				10.5	- - -					
4.0 —				10.0 -	- - - -					
4.5 — - - -				9.5	- - - -					
					_		,			
		Termination: Pit Wall Stability: Groundwate Scheduled depth Pit walls stable. Dry	r Rate: F	Remar	ks:		 	D = Sm CBR = Ur	k disturbed nall disturbed ndisturbed CBR ironmental	

Contract 54		Trial Pit and Dyna	amic	Pr	obe	Log			Trial Pit I	
Contra	ct:	Hollybank	Easting:		717698.	097	Date:		26/09/2017	
Locatio	n:	Swords, Co. Dublin	Northing):	748155.	594	Excav	ator:	JCB 3CX	
Client:		Cairn Homes	Elevation	n:	10.16		Logge	d By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimensi (LxWxD		3.50 x (0.60 x 3.00	Scale:		1:25	
	(mbgl)	Stratum Description	Legend		l (mOD)	Sample			Probe	Water Strike
Scale:	Depth	TOPSOIL.		Scale	: Depth:	Depth	Гуре	1		Otrike
1.5 — 2.0 — 3.5 — 4.0 — 4.0 —	1 10	Firm light brown sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded, fine to coarse of limestone. Firm becoming stiff brown sandy slightly gravelly silty CLAY with high cobble content. Sand is fine to coarse. Gravel is subangular to rounded, fine to coarse of limestone. Cobbles are subangular to rounded of limestone. Grey brown silty sandy subangular to rounded, fine to coarse GRAVEL of limestone with high cobble content. Sand is fine to coarse. Cobbles are subangular to rounded of limestone. Pit terminated at 3.00m		9.5 9.0 - 8.5 7.5 7.0 -	9.86	2.00	В	1	18	
4.5 —				5.5	- - - - -					
		Termination: Pit Wall Stability: Groundwate	r Rate: F	l Remar	ks:		Ke	ey:		
		Scheduled depth Pit walls stable. Dry	-					= Sm 3R = Un	k disturbed all disturbed disturbed CBR ronmental	

Contra 54	ct No: 115	Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pit	
Contra	ict:	Hollybank	Easting		717785.	379	Date:	27/09/2017	
Locatio	on:	Swords, Co. Dublin	Northing	g:	748160.	575	Excavator:	JCB 3CX	
Client:		Cairn Homes	Elevation	n:	9.97		Logged By:	M. Kaliski	
Engine	eer:	Waterman Moylan	Dimens (LxWxD		3.50 x (0.60 x 3.00	Scale:	1:25	
	(mbgl)	Stratum Description	Legend	Leve	I (mOD)	Sampl	es	Probe	Wate
Scale:	Depth	TOPSOIL.		Scale	: Depth:	Depth	Type 1		Strike
1.0 — 1.5 — 2.0 — 3.5 — 4.0 — 4.5 — 4.5 —	0.20	Firm brown slightly sandy slightly gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Cobbles are subrounded to rounded of limestone. Light brown very silty slightly gravelly fine to coarse SAND with frequent silt bands.		9.5 · · · · · · · · · · · · · · · · · · ·	9.77	2.50	B 3 3 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	13 13 12 13 12 14 25 35	
		Termination: Pit Wall Stability: Groundwate Scheduled depth Pit walls stable. Dry	r Rate: I	- Remark	KS:		Key:	ulk disturbed	
6							CBR = U	mall disturbed Indisturbed CBR vironmental	

Contract 54		Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pit	
Contra	ct:	Hollybank	Easting:		717873.	933	Date:	27/09/2017	
Locatio	n:	Swords, Co. Dublin	Northing	:	748147.	926	Excavator:	JCB 3CX	
Client:		Cairn Homes	Elevatio	n:	12.44		Logged By	r: M. Kaliski	
Engine	er:	Waterman Moylan	Dimensi (LxWxD)		3.50 x (0.60 x 3.00	Scale:	1:25	
Level		Stratum Description	Legend		l (mOD)	Sample		Probe	Water Strike
Scale:	Depth	TOPSOIL.		Scale	: Depth:	Depth -	Гуре 1		Strike
0.5 —	0.30	Firm brown sandy slightly gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is subangular to rounded, fine to coarse of limestone. Cobbles are subangular to subrounded of limestone. Stiff brown sandy slightly gravelly silty CLAY with high		12.0 -	- 12.14 - - - - - - - - - - - - - - - - - - -		2 2 4 6	12 12 15	
1.0 —		cobble content. Sand is fine to coarse. Gravel is subangular to rounded, fine to coarse of limestone. Cobbles are subangular to subrounded of limestone.		11.0 -		1.00	В	13 14 15 19 16 17 17 20 21	
2.0 —	1.90	Very stiff grey brown sandy slightly gravelly silty CLAY with high cobble content. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Cobbles are angular to subrounded of limestone.		10.5	10.54	2.00	В	35	
3.0 —	3.00	Pit terminated at 3.00m		9.5	9.44				
3.5 —				9.0 - 8.5					
4.0 —					_ _ _ _				
4.5 —				7.5	- - - -				
		Termination: Pit Wall Stability: Groundwater	Rate: F	Remar	ks:	1	Key:		
		Scheduled depth Pit walls stable. Dry	-				D = : CBR =	Bulk disturbed Small disturbed Undisturbed CBR invironmental	

Contract N 5415		Trial Pit and Dyna	amic	Pr	obe	Log			Trial Pit I	
Contract:		Hollybank	Easting:		717743.	796	Date:		26/09/2017	
Location:		Swords, Co. Dublin	Northing	:	748104.8	831	Excav	ator:	JCB 3CX	
Client:		Cairn Homes	Elevatio	n:	14.27		Logge	d By:	M. Kaliski	
Engineer:		Waterman Moylan	Dimensi (LxWxD)		3.50 x 0	0.60 x 3.00	Scale:		1:25	
Level (mb		Stratum Description	Legend		I (mOD)	Sample		1	Probe	Water
- 0 0 0 0 1.0	40	TOPSOIL. Soft brown sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded, fine to coarse of limestone. Firm brown sandy slightly gravelly silty CLAY with high cobble content. Sand is fine to coarse. Gravel is subangular to subrounded, fine to coarse of limestone. Cobbles are subangular to rounded of limestone. Firm becoming stiff grey sandy slightly gravelly silty CLAY with high cobble and medium boulder content. Sand is fine to coarse. Gravel is subangular to subrounded, fine to coarse of limestone. Cobbles and boulders are subangular to rounded of limestone (up to 400mm diameter).		13.5 13.0 - 12.5 11.0 - 10.5	: Depth: - 14.07 - 13.87 - 13.87 - 12.77 - 1 12.77 - 1 11.27 - 1 11.27 - 1 11.27	1.00 2.00	B B	1 2 2 2 2 2 2 3 3 3 3 2 2 2 2 1 1 1 5 5 5 2 2 2 2 1 11 11 12 12 12 12 12 12 12 12	2 14 2 3	Strike
)	Termination: Pit Wall Stability: Groundwate Scheduled depth Pit walls stable. Dry	Rate: F	9.5 Remar	 _ _ ks:		B D	= Sma	c disturbed all disturbed disturbed CBR	

Contract 54		Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pit I	
Contrac	ct:	Hollybank	Easting:		717812.	038	Date:	27/09/2017	
Locatio	n:	Swords, Co. Dublin	Northing	:	748070.	366	Excavator:	JCB 3CX	
Client:		Cairn Homes	Elevatio	ո։	13.53		Logged By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimension (LxWxD)		3.50 x (0.60 x 3.00	Scale:	1:25	
Level		Stratum Description	Legend		l (mOD)	Sample		Probe	Water Strike
Scale:	Depth	TOPSOIL.		Scale	: Depth:	Depth -	Гуре 2		Ourke
0.5 —		Firm brown sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded, fine to coarse of limestone.		13.0 -	13.33		2 2 2 3 4 6		
1.0 —		Firm becoming stiff brown sandy slightly gravelly silty CLAY with high cobble content. Sand is fine to coarse. Gravel is subangular to subrounded, fine to coarse of limestone. Cobbles are subangular to subrounded of limestone.		12.5	12.73	1.00	B 3 5 6		
1.5 —	1.70	Stiff becoming very stiff light brown slightly sandy		12.0 -	11.83		8 8	0 20 30	
2.0 —		gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Cobbles are subangular to rounded of limestone.		11.5	_ _ _ _	2.00	В	35	
2.5 — — — —				11.0 -	- - - -				
3.0 —	3.00	Pit terminated at 3.00m		10.5	10.53				
3.5 —				10.0 -	- - - -				
4.0 —				9.5	- - -				
4.5 — - -				9.0 -					
-					_				
		Termination: Pit Wall Stability: Groundwater	r Rate: F	temar	ks:		Key:		
		Scheduled depth Pit walls stable. Dry	-				D = S CBR = L	ulk disturbed mall disturbed Jndisturbed CBR vironmental	

Contra 54	ct No:	Trial Pit and Dyna	amic	Pr		Trial Pit			
Contra	ct:	Hollybank	Easting:		717707.	802	Date:	26/09/2017	
Locatio	on:	Swords, Co. Dublin	Northing	j:	747999.	822	Excavator:	JCB 3CX	
Client:		Cairn Homes	Elevatio	n:	13.70		Logged By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimensi (LxWxD		3.50 x (0.60 x 3.00	Scale:	1:25	
Level	(mbgl)	Stratum Description	Legend	, , , ₁	l (mOD)	Sample	es	Probe	Wate
Scale:	Depth	TOPSOIL.		Scale	: Depth:	Depth	Type 2		Strike
0.5 —	0.20	Firm brown sandy gravelly silty CLAY with high cobble content. Sand is fine to coarse. Gravel is subangular to rounded, fine to coarse of limestone. Cobbles are subrounded to rounded of limestone. Firm light brown slightly sandy slightly gravelly silty		13.5 - 13.0 -	13.50		1 2 2 1 2 1 2 3		
1.0 —		CLAY. Sand is fine to coarse. Gravel is subangular to subrounded, fine to coarse of limestone.		12.5 - 12.0 -	- - - - - -	1.00	B 2 3 2 2 2 3 1 1 1 2 2 3 3		
2.0 — - - - - 2.5 — -	1.80	Stiff grey brown sandy slightly gravelly silty CLAY with high cobble content and frequent gravel pockets. Sand is fine to coarse. Gravel is subangular to rounded, fine to coarse of limestone. Cobbles are subangular to rounded of limestone.		11.5 -	_ 11.90 	2.00	B 8 8 7 6 8 8 1 1	1 13 35	
3.0 — 3.5 —	3.00	Pit terminated at 3.00m	<u> </u>	10.5 -	10.70				
4.0 —				10.0 -					
- - 4.5 —				9.5 -					
_					_		T		
		Termination: Pit Wall Stability: Groundwate Scheduled depth Pit walls stable. Dry	r Rate: F	Remark	(S:		D = Sn CBR = Ui	lk disturbed nall disturbed ndisturbed CBR rironmental	

Contract 54		Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pi	
Contract:		Hollybank	Easting:		717764.277		Date:	ate: 26/09/201	
Location:		Swords, Co. Dublin	Northing):	748021.	529	Excavator	JCB 3CX	
Client:		Cairn Homes	Elevation	n:	13.61		Logged By	y: M. Kaliski	
Engineer:		Waterman Moylan	Dimensi (LxWxD			Scale:	1:25		
Level		Stratum Description	Legend		l (mOD)	Sampl		Probe	Water Strike
Scale:	Depth	TOPSOIL.		Scale	e: Depth:	Depth	Type 2		Otrike
- - -	0.20	MADE GROUND: grey brown slightly sandy gravelly silty clay with high cobble content.		13.5	13.41		3 3 4		
0.5 —				13.0 -	_			8	
1.0		Firm becoming stiff brown slightly sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is subangular to rounded, fine to coarse of limestone.		12.5	_ 12.91 _ _	1.00	B 1 1		
- - - 1.5 —			× × × × × × × × × × × × × × × × × × ×		_ - -		1 3 2 3 2		
2.0—				12.0 -	- - -		3 4 4 4		
			× × × × × × × × × × × × × × × × × × ×	11.5			6	5 7 7 7 8	
2.5 — - - -			× × × × × × × × × × × × × × × × × × ×	11.0 -	- - -	2.50	B 6	7	
3.0 —	3.00	Pit terminated at 3.00m		10.5	10.61 			10 12 15 19	5
3.5 —				10.0 -	- - -				
4.0 —				9.5	- - -				
4.5 —				9.0 -					
-					-				
		Termination: Pit Wall Stability: Groundwate	r Rate: F	Remar	ks:		Key:		
		Scheduled depth Pit walls stable. Dry	-				D = CBR =	Bulk disturbed Small disturbed = Undisturbed CB Environmental	₹

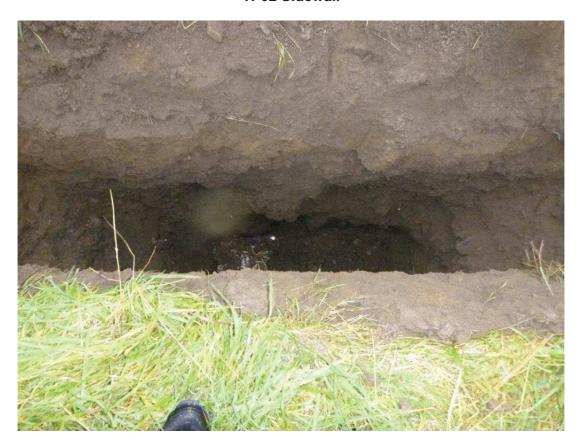
Contract 54		Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pit TP1	
Contra	ct:	Hollybank	Easting:		717828.563		Date:	26/09/2017	
Location:		Swords, Co. Dublin	Northing	:	748028.	748028.279		r: JCB 3CX	
Client:		Cairn Homes	Elevatio	n:	13.12		Logged B	y: M. Kaliski	
Engineer:		Waterman Moylan	Dimension (LxWxD)			Scale:	1:25		
Level		Stratum Description	Legend		l (mOD)	Sample		Probe	Water Strike
Scale:	Depth	TOPSOIL.		Scale	-	Depth	Гуре 1		Strike
0.5 —	0.90	Firm light brown sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Firm becoming stiff light brown sandy slightly gravelly		13.0 -	12.92 	0.80	1 1 2 2 1 2 1 2 8		
1.0 —		silty CLAY with high cobble content. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse of limestone. Cobbles are subangular to rounded of limestone.		12.0 -	- - - - -	1.50	2 2 3 4 4 4 4 4	3	
2.0 —				11.0 -			5	7 8 9	
3.0 —	3.00	Pit terminated at 3.00m		10.5	10.12	3.00	В	15 13 11 12 12 14 15 13	
3.5 —				9.5	- - - - -			24	
4.0 —				9.0 -	- - - -				
				8.5	- - -				
		Termination: Pit Wall Stability: Groundwater	r Rate: F	Remar	ks:		Key:		•
		Scheduled depth. Pit walls stable. Dry	-					Bulk disturbed Small disturbed = Undisturbed CBR Environmental	

Contract No: 5415		Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pit No: TP16	
Contract:		Hollybank	Easting		717879.885 Date		Date:	25/09/2017	
Location:		Swords, Co. Dublin	Northing	g:	748022.537		Excavator:	JCB 3CX	
Client:		Cairn Homes	Elevatio	n:	12.57		Logged By: M. Kaliski		
Engineer:		Waterman Moylan	Dimens (LxWxD			Scale:	1:25		
Level	(mbgl)	Stratum Description	Legend	Level	(mOD)	Sampl		Probe	Wate
Scale:	Depth	TOPSOIL.		Scale:	Depth:	Depth	Type 2		Strik
1.0 —	1.30	Firm light brown sandy slightly gravelly silty CLAY with high cobble content. Sand is fine to coarse. Gravel is subangular to rounded, fine to coarse of limestone. Cobbles are subrounded to rounded of limestone. Firm becoming stiff light brown sandy slightly gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is subangular to rounded, fine to coarse of limestone. Cobbles are subangular to rounded of limestone. Stiff brown sandy slightly gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is angular to rounded, fine to coarse of limestone. Cobbles are subangular to rounded of limestone. Pit terminated at 3.00m		12.0 – 11.0 – 11.0 – 10.0 – 9.5 – 9.0 –	11.27	1.00	B 3 3 3 2 2 3 3 B 3 5 5 5 4 4 6 6 7 7 6 6 8 8 8 10 10 10 10 10 10 10 10 10 10 10 10 10	17 35	
		Termination: Pit Wall Stability: Groundwate Scheduled depth Pit walls stable. Dry	r Rate:	Remark	(S:		Key:	ılk disturbed	
(3		Policuled deptil Fit walls stable. DIY		•			D = Sr CBR = U	nall disturbed nall disturbed ndisturbed CBR vironmental	!

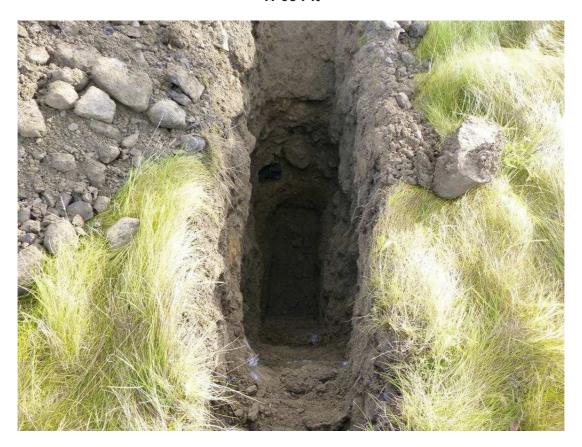
Contract No: 5415		Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pit No: TP17	
Contract:		Hollybank	Easting:		717851.	855	Date:	25/09/2017	
Location:		Swords, Co. Dublin	Northing	ng: 747971.646		Excavator:	JCB 3CX		
Client:		Cairn Homes	Elevatio	ion: 15.23		Logged By:	M. Kaliski		
Engineer:		Waterman Moylan	Dimensi (LxWxD		3.50 x (0.60 x 3.00	Scale:	1:25	
Level		Stratum Description	Legend		l (mOD)	Sample		Probe	Water
Scale:	0.30	TOPSOIL. MADE GROUND: brown slightly sandy gravelly silty clay with high cobble content, pockets of gravel and some timber fragments. MADE GROUND: brown slightly sandy gravelly silty clay with medium cobble content, pockets of gravel and some concrete and red brick fragments. MADE GROUND: grey slightly sandy gravelly silty clay with some timber fragments. Firm becoming stiff grey sandy slightly gravelly silty CLAY with high cobble content. Sand is fine to coarse. Gravel is subangular to rounded, fine to coarse of limestone. Cobbles are subangular to rounded of limestone.		15.0 - 14.5 - 14.5 - 11	13.73 13.73 13.33 12.23	1.00 1.70 2.40	B 9 8 11 8 9 9	11 12 15	
		Termination: Pit Wall Stability: Groundwate Scheduled depth Pit walls stable. Dry	r Rate: F	Remark	ds:		D = Sr	ulk disturbed mall disturbed Indisturbed CBR	

TP01 Pit

TP01 Sidewall


TP01 Spoil

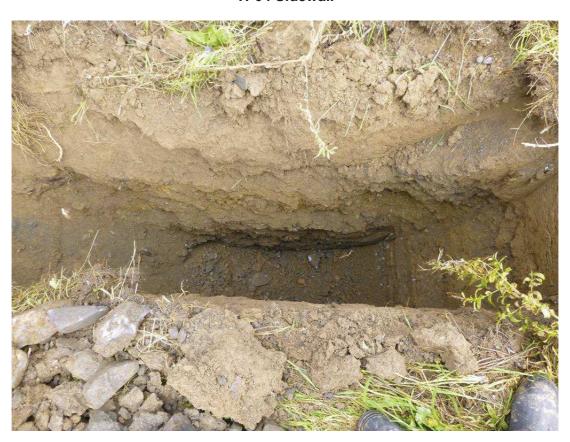
TP02 Pit


TP02 Sidewall

TP02 Spoil

TP03 Pit

TP03 Sidewall


TP03 Spoil

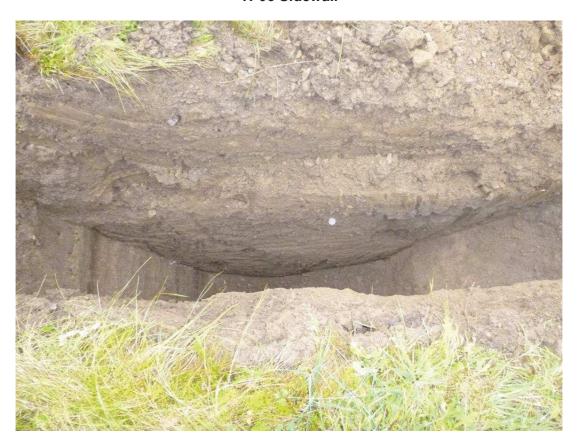
TP04 Pit

TP04 Sidewall

TP04 Spoil

TP05 Pit

TP05 Sidewall


TP05 Spoil

TP06 Pit

TP06 Sidewall

TP06 Spoil

TP07 Pit

TP07 Sidewall

TP07 Spoil

TP08 Pit

TP08 Sidewall

TP08 Spoil

TP09 Pit

TP09 Sidewall

TP09 Spoil

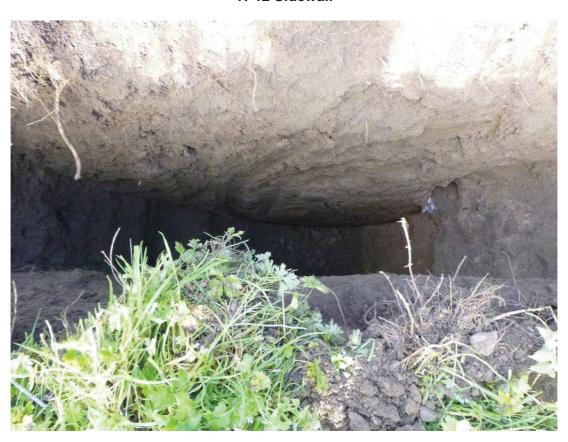
TP10 Pit

TP10 Sidewall

TP10 Spoil

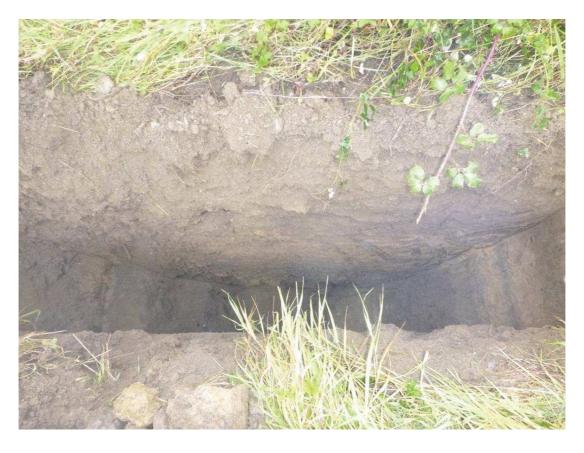
TP11 Pit

TP11 Sidewall


TP11 Spoil

TP12 Pit

TP12 Sidewall


TP12 Spoil

TP13 Pit

TP13 Sidewall

TP13 Spoil

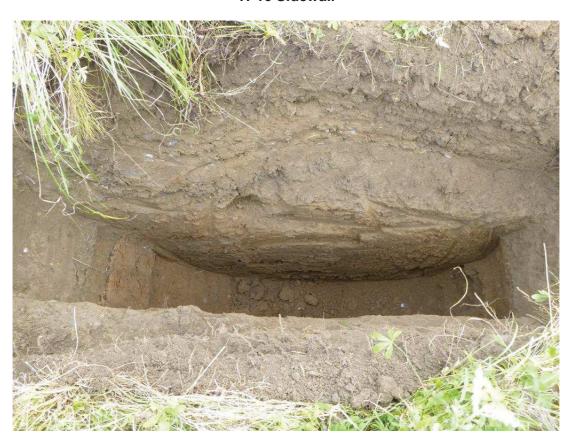
TP14 Pit

TP14 Sidewall

TP14 Spoil

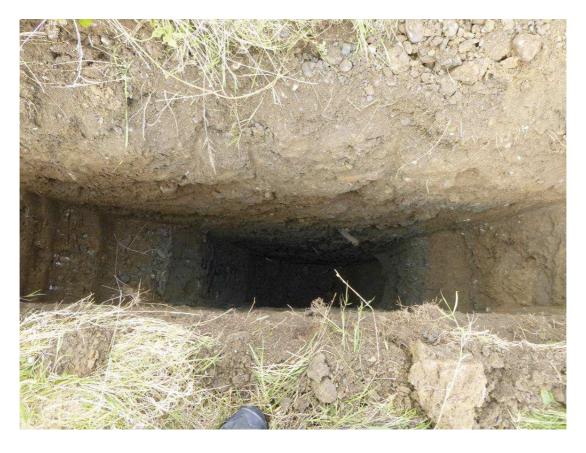
TP15 Pit

TP15 Sidewall


TP15 Spoil

TP16 Pit

TP16 Sidewall


TP16 Spoil

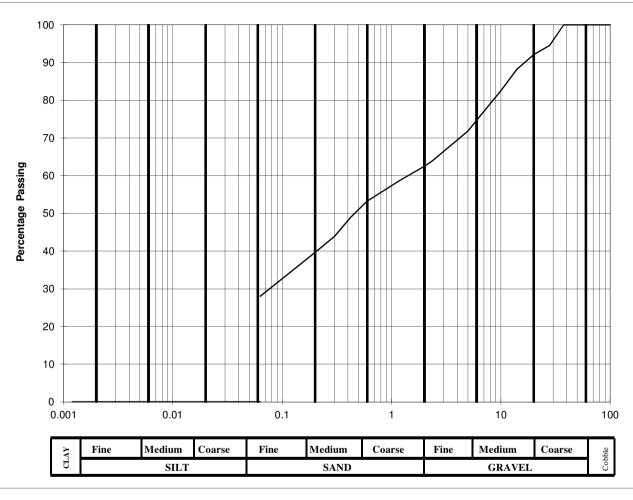
TP17 Pit

TP17 Sidewall

TP17 Spoil

Appendix 3 Laboratory Test Results

Classification Tests

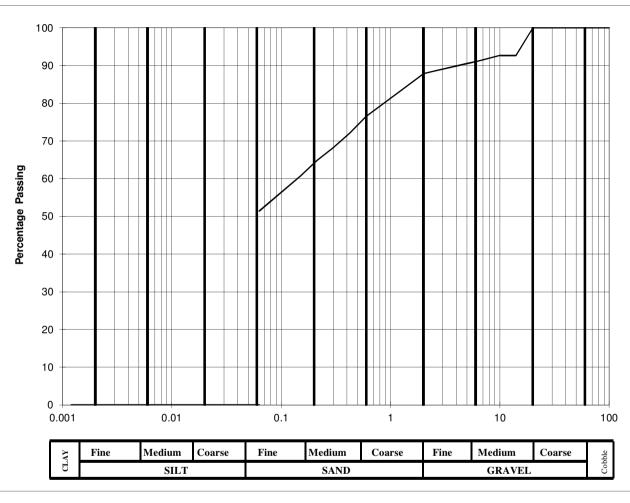

Client	Cairn Homes
Site	Hollybank, Swords
S.I. File No	5415 / 17
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email:info@siteinvestigations.ie
Report Date	11th October 2017

Hole ID	Depth	Sample	Lab Ref	Sample	Natural	Liquid	Plastic	Plastic	Min. Dry	Particle	%	Comments	Remarks C=Clay; M=Silt
		No	No.	Type	Moisture	Limit	Limit	Index	Density	Density	passing		Plasticity: L=Low;
					Content	%	%	%	Mg/m^3	Mg/m^3	425um		I =Intermediate; H =High;
					%								V=Very High; E=Extremely
													High
BH02	1.00	MC04	17/1823	В	11.8	28	23	5			49.0		ML
BH05	1.00	MC06	17/1824	В	21.9	36	22	14			72.1		CI
BH07	0.50	MC08	17/1825	В	16.9	34	22	12			84.3		CL

Printed 12/10/2017 Paddy McGonagle
Sheet 1 of 1 Site Investigations Ltd

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	100		
28	94.5		
20	92.1		
14	88.2		
10	82.5		
6.3	75.4		
5.0	71.8		
2.36	63.9		
2.00	62.5		
1.18	58.7		
0.600	53.2		
0.425	49		
0.300	43.9		
0.212	40.2		
0.150	36.8		
0.063	28		

Cobbles, %	0
Gravel, %	38
Sand, %	35
Clay / Silt, %	28

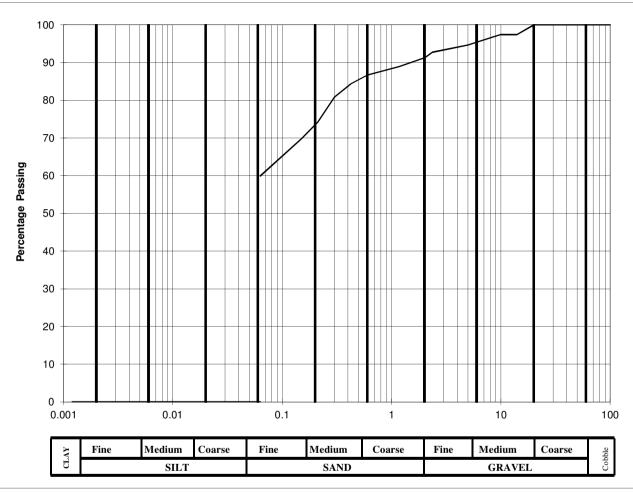


Client:	Cairn Homes	Lab. No:	17/1823	Hole ID:	BH 02
Project:	Hollybank, Swords	Sample No:	MC04	Depth, m:	1.00

Material description:	sandy gravelly clayey SILT
Domontes	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Remarks:	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	100		
28	100		
20	100		
14	92.6		
10	92.6		
6.3	91.1		
5.0	90.5		
2.36	88.3		
2.00	87.8		
1.18	82.9		
0.600	76.5		
0.425	72.1		
0.300	68.3		
0.212	64.8		
0.150	60.7		
0.063	51		

Cobbles, %	0
Gravel, %	12
Sand, %	37
Clay / Silt, %	51



Client:	Cairn Homes	Lab. No:	17/1824	Hole ID:	BH 05
Project :	Hollybank, Swords	Sample No:	MC06	Depth, m:	1.00

Material description:	slightly gravelly sandy silty CLAY
	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Remarks:	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	100		
28	100		
20	100		
14	97.4		
10	97.4		
6.3	95.5		
5.0	94.6		
2.36	92.7		
2.00	91.2		
1.18	88.9		
0.600	86.6		
0.425	84.3		
0.300	80.8		
0.212	74.2		
0.150	69.8		
0.063	60		

Cobbles, %	0
Gravel, %	9
Sand, %	31
Clay / Silt, %	60

Client:	Cairn Homes	Lab. No:	17/1825	Hole ID:	BH 07
Project:	Hollybank, Swords	Sample No:	MC08	Depth, m:	0.50

Material description:	slightly gravelly slightly sandy silty CLAY
D ama a ulas .	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Remarks:	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

California Bearing Ratio (CBR) In accordance with BS1377: Part 4: Method 7

Client	Cairn Homes
Site	Hollybank, Swords
S.I. File No	5415 / 17
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email info@siteinvestigations.ie
Report Date	11th October 2017

CBR No	Depth	Sample	Sample	Lab Ref	Moisture Content	CBR Value (%)	Location / Remarks
	(mBGL)	No	Type		(%)		
CBR01	0.60	MK01	CBR	17/1826	16.3	6.6	
CBR02	0.60	MK02	CBR	17/1827	12.8	6.8	
CBR03	0.60	MK03	CBR	17/1828	6.8	7.3	
CBR04	0.60	MK04	CBR	17/1829	12.8	6.6	
CBR05	0.60	MK05	CBR	17/1830	9.0	7.7	
CBR06	0.60	MK06	CBR	17/1831	17.5	6.9	
CBR07	0.60	MK07	CBR	17/1832	12.0	6.2	
CBR08	0.60	MK08	CBR	17/1833	13.4	7.0	

Chemical Testing In accordance with BS 1377: Part 3

Client	Cairn Homes
Site	Hollybank, Swords
S.I. File No	5415 / 17
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email:info@siteinvestigations.ie
Report Date	11th October 2017

Hole Id	Depth	Sample	Lab Ref	рН	Water Soluble	Water Soluble	Organic	Chloride	% passing	Remarks
	(mBGL)	No		Value	Sulphate Content	Sulphate Content	Content	ion	2mm	
					(2:1 Water-soil	(2:1 Water-soil	%	Content		
					extract) (SO ₃)	extract) (SO ₃)		(water:soil		
					g/L	%		ratio 2:1)		
								%		
BH02	1.00	MC04	17/1823	8.43	0.119	0.074		0.19	62.5	
BH05	1.00	MC06	17/1824	8.30	0.126	0.110		0.24	87.8	
BH07	0.50	MC08	17/1825	8.47	0.116	0.106		0.26	91.2	

_____Paddy McGonagle
Site Investigations Ltd.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US

Tel: (01244) 528700 Fax: (01244) 528701

email: hawardencustomerservices@alsglobal.com

Website: www.alsenvironmental.co.uk

Site Investigations Ltd The Grange Carhugar 12th Lock Road Lucan Co. Dublin

Location:

Attention: Stephen Letch

CERTIFICATE OF ANALYSIS

Date: 10 October 2017 **Customer:** D_SITEINV_NCS Sample Delivery Group (SDG): 170930-79

5415 Your Reference:

Hollybank, Swords 427686 Report No:

We received 3 samples on Saturday September 30, 2017 and 3 of these samples were scheduled for analysis which was completed on Tuesday October 10, 2017. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Environmental Hawarden (Method codes TM) or ALS Environmental Aberdeen (Method codes S).

Approved By:

Sonia McWhan **Operations Manager**

Validated

CERTIFICATE OF ANALYSIS

170930-79 5415 427686 SDG: Client Reference: Report Number: Location: Hollybank, Swords Order Number: 73/B/17 Superseded Report:

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
16282588	BH02		1.00 - 1.00	27/09/2017
16282590	BH05		1.00 - 1.00	27/09/2017
16282591	BH07		0.50 - 0.50	27/09/2017

Maximum Sample/Coolbox Temperature (°C):

16.2

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of (5±3)°C for a period of up to 24hrs.

ISO5667-3 Water quality - Sampling - Part3 During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of (5±3)°C.

Only received samples which have had analysis scheduled will be shown on the following pages.

Validated

CERTIFICATE OF ANALYSIS

ALS

SDG: 170930-79 Client Reference: 5415 Report Number: 427686
Location: Hollybank, Swords Order Number: 73/B/17 Superseded Report:

Paralle Laurand											
Results Legend X Test	Lab Sample No(s)				1628			1628			1628
No Determination		(-)			16282588			16282590			16282591
Possible	Customer Sample Reference				ВН02	ВН05				ВН07	
Sample Types - S - Soil/Solid UNS - Unspecified Solid GW - Ground Water	AGS Refere	nce									
SW - Surface Water LE - Land Leachate	710011010										
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (m)			1.00 - 1.00	1.00 - 1.00			0.00		
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Container			250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB	250g Amber Jar (ALE210)	60g VOC (ALE215)
	Sample Ty	pe	ဟ	တ	S	S	တ	S	S	ဟ	S
Anions by Kone (w)	All	NDPs: 0 Tests: 3	Х			Х			X		
CEN Readings	All	NDPs: 0 Tests: 3	Х			Х			Х		
Chromium III	All	NDPs: 0 Tests: 3		Х			Х			Х	
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 3	Х			Х			Х		
Dissolved Organic/Inorganic Carbon	All	NDPs: 0 Tests: 3	Х			Х			Х		
EPH CWG (Aliphatic) GC (S)	All	NDPs: 0 Tests: 3		Х			Х			Х	
EPH CWG (Aromatic) GC (S)	All	NDPs: 0 Tests: 3		Х			Х			Х	
Fluoride	All	NDPs: 0 Tests: 3	Х			X			X		
GRO by GC-FID (S)	All	NDPs: 0 Tests: 3			Х			Х			X
Hexavalent Chromium (s)	All	NDPs: 0 Tests: 3		х			х			х	
Loss on Ignition in soils	All	NDPs: 0 Tests: 3		Х			Х			Х	
Mercury Dissolved	All	NDPs: 0 Tests: 3	х			X			X		
Metals in solid samples by OES	All	NDPs: 0 Tests: 3		Х			Х			Х	
Mineral Oil	All	NDPs: 0 Tests: 3		Х			Х			Х	
PAH by GCMS	All	NDPs: 0 Tests: 3		Х			Х			Х	

CERTIFICATE OF ANALYSIS

ALS

SDG: 170930-79 Client Reference: 5415 Report Number: 427686
Location: Hollybank, Swords Order Number: 73/B/17 Superseded Report:

Results Legend X Test	Lab Sample	No(s)			16282588			16282590			16282591
No Determination Possible					588			590			591
	Custome Sample Refe				BH02			вн05			вно7
Sample Types -											
S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate PL - Prepared Leachate	AGS Refere	ence									
PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (n	1)	1.00 - 1.00				0.50 - 0.50				
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Containe	er	1kg TUB	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB	250g Amber Jar (ALE210)	60g VOC (ALE215)
	Sample Ty	/pe	ဟ	v	S	S	တ	S	S	ဟ	S
PCBs by GCMS	All	NDPs: 0 Tests: 3		Х			Х			Х	
Phenols by HPLC (W)	All	NDPs: 0 Tests: 3	Х			Х			Х		
Sample description	All	NDPs: 0 Tests: 3		Х			Х			Х	
Total Dissolved Solids on Leachates	All	NDPs: 0 Tests: 3	X			X			X		
Total Organic Carbon	All	NDPs: 0 Tests: 3		Х			Х			Х	
TPH CWG GC (S)	All	NDPs: 0 Tests: 3		Х			Х			Х	

427686

 SDG:
 170930-79
 Client Reference:
 5415
 Report Number:

 Location:
 Hollybank, Swords
 Order Number:
 73/B/17
 Superseded Report:

Sample Descriptions

Grain Sizes

very fine <0.	063mm fine	0.063mm - 0.1mm m	nedium 0.1mn	n - 2mm co	parse 2mm -	10mm very coa	rse >10r
Lab Sample No(s)	Customer Sample R	ef. Depth (m)	Colour	Description	Inclusions	Inclusions 2	
16282588	BH02	1.00 - 1.00	Dark Brown	Sandy Clay Loam	Stones	N/A	
16282590	BH05	1.00 - 1.00	Dark Brown	Sandy Clay Loam	Stones	Glass & Stones	
16282591	BH07	0.50 - 0.50	Dark Brown	Sandy Clay Loam	Stones	None	

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

427686

CERTIFICATE OF ANALYSIS

SDG: 170930-79 Client Reference: 5415 Report Number: Location: Hollybank, Swords Order Number: 73/B/17 Superseded Report:

Customer Sample Ref. BH02 BH05 BH07 Depth (m) 1.00 - 1.00 1.00 - 1.00 0.50 - 0.50 Sample Type tot.unfilt Total / unfiltered sample. Subcontracted test. Date Sample 27/09/2017 27/09/2017 27/09/2017 Subcontracted test.

% recovery of the surrogate standard to check the efficiency of the method. The results of individual compounds within samples aren't corrected for the recovery Trigger breach confirmed Date Received 30/09/2017 30/09/2017 30/09/2017 170930-79 170930-79 SDG Re Lab Sample No.(s) 16282588 16282590 16282591 1-5&+§@ Sample deviation (see appendix) AGS Reference LOD/Units Component Method Moisture Content Ratio (% of as 10 14 % PM024 19 received sample) < 0.7 % TM018 14 3.06 3 52 Loss on ignition Μ М Μ Mineral oil >C10-C40 <1 mg/kg TM061 22.9 15.3 25.6 Organic Carbon, Total <0.2 % TM132 0.231 0.509 0.654 М М Μ Chromium, Hexavalent <0.6 mg/kg TM151 <0.6 <0.6 <0.6 # # TM168 <3 <3 PCB congener 28 <3 µg/kg <3 М M M TM168 <3 <3 <3 PCB congener 52 <3 µg/kg M М Μ PCB congener 101 TM168 <3 <3 <3 <3 µg/kg Μ Μ Μ PCB congener 118 TM168 <3 <3 <3 <3 µg/kg M М М PCB congener 138 <3 µg/kg TM168 <3 <3 <3 Μ Μ PCB congener 153 TM168 <3 µg/kg <3 <3 <3 Μ M Μ PCB congener 180 <3 µg/kg TM168 <3 <3 <3 Μ М Μ Sum of detected PCB 7 <21 µg/kg TM168 <21 <21 <21 Congeners Chromium, Trivalent <0.9 mg/kg TM181 10.1 11.1 15.7 TM181 <0.6 1.01 <0.6 Antimony <0.6 mg/kg Arsenic TM181 7.74 13.5 11.5 <0.6 mg/kg М M M Barium <0.6 mg/kg TM181 48.8 67.5 104 # # # <0.02 mg/kg TM181 0.983 2.28 1.28 Cadmium Μ М Μ TM181 Chromium <0.9 mg/kg 10 1 11 1 15.7 M Μ TM181 14.6 33.2 21.3 Copper <1.4 mg/kg M Μ Μ Lead <0.7 mg/kg TM181 10.8 23.4 32.8 M Μ Μ Mercury <0.14 mg/kg TM181 0.295 0.425 0.301 Μ М Μ Molybdenum <0.1 mg/kg TM181 1.67 3.18 2.65 Nickel TM181 24.1 50.9 30.4 <0.2 mg/kg М M М TM181 <1 <1 <1 Selenium <1 mg/kg # # # 49.5 85.9 72.8 Zinc <1.9 mg/kg TM181 M М Μ

CERTIFICATE OF ANALYSIS

Client Reference: Order Number: Report Number: Superseded Report: SDG: 170930-79 5415 427686 Hollybank, Swords 73/B/17 Location:

PAH by GCMS										
Results Legend # ISO17025 accredited.		Customer Sample Ref.	BH02		BH05		BH07			
M mCERTS accredited. aq Aqueous / settled sample.										
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Depth (m) Sample Type	1.00 - 1.00 Soil/Solid (S)		1.00 - 1.00 Soil/Solid (S)		0.50 - 0.50 Soil/Solid (S)			
* Subcontracted test.		Date Sampled	27/09/2017		27/09/2017		27/09/2017			
check the efficiency of the method.	. The	Sample Time Date Received	30/09/2017		30/09/2017		30/09/2017			
results of individual compounds wi samples aren't corrected for the re-		SDG Ref	170930-79 16282588		170930-79 16282590		170930-79 16282591			
(F) Trigger breach confirmed 1-5&•§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	10202300		10202390		10202391			
Component	LOD/Unit	ts Method			_					
Naphthalene	<9 µg/k	g TM218	<9	М	<9	М	23.3	М		
Acenaphthylene	<12 µg/k	g TM218	<12	IVI	<12	IVI	<12	141		
, .,	1.3	ŭ .		М		М		М		
Acenaphthene	<8 µg/k	g TM218	<8		<8		130			
5.	40 "	T11010		M	10	М	101	M		
Fluorene	<10 µg/k	kg TM218	<10	М	<10	М	101	М		
Phenanthrene	<15 µg/k	g TM218	<15	IVI	<15	141	929	141		
	, ,	<u> </u>		М		М		М		
Anthracene	<16 µg/k	kg TM218	<16		<16		86.9			
F	.47 //	T14040	.47	M	.47	M	040	M		
Fluoranthene	<17 µg/k	kg TM218	<17	М	<17	М	642	М		
Pyrene	<15 µg/k	kg TM218	<15	141	<15	141	521	141		
		<u> </u>		М		М		М	 	
Benz(a)anthracene	<14 µg/k	kg TM218	<14		<14		214		 	
01	.40 //	T14040	.40	M	-40	M	404	M		
Chrysene	<10 µg/k	kg TM218	<10	М	<10	М	194	М		
Benzo(b)fluoranthene	<15 µg/k	g TM218	<15	IVI	<15	IVI	204	141		
(-)	- 13	ŭ .		М		М	-	М		
Benzo(k)fluoranthene	<14 µg/k	kg TM218	<14		<14		72.6			
- ()				M		M		M		
Benzo(a)pyrene	<15 µg/k	kg TM218	<15	М	<15	М	112	М		
Indeno(1,2,3-cd)pyrene	<18 µg/k	g TM218	<18	IVI	<18	IVI	42.8	IVI		
	173	ŭ .		М		М		М		
Dibenzo(a,h)anthracene	<23 µg/k	kg TM218	<23		<23		<23			
	21 "			M		М		M		
Benzo(g,h,i)perylene	<24 µg/k	kg TM218	<24	М	<24	М	65.5	М		
Coronene	<200 µg/	kg TM218	<200	IVI	<200	IVI	<200	IVI		
		Ĭ								
PAH, Total Detected USEPA 16	<118 µg/	kg TM218	<118		<118		3340			
						-				
	<u> </u>								 	
						-				
	<u> </u>								 	

Client Reference: Order Number: SDG: 170930-79 5415

Hollybank, Swords Location:

73/B/17

Report Number: Superseded Report:

427686

Part	TPH CWG (S)							
Part	Results Legend	С	Customer Sample Ref.	BH02	BH05	BH07		
Second Content Content	M mCERTS accredited.							
Second Companies Compani			Depth (m)	1.00 - 1.00	1.00 - 1.00	0.50 - 0.50		
Section Companies Compan				27/09/2017	27/09/2017	27/09/2017		
Compose	70 TOGOTOLY OF THE GUILLOGIC GUILLOG							
Companion		covery						
Companies March								
Second Control Seco		LOD/Units						
Control Multiply Startery butyletines Cont				66	65	102		
Marie Mari	,							
Marie Mari	GRO TOT (Moisture Corrected)	<44 µg/kg	TM089	488	<44	<44		
Michael Properties Michael	,	''			м	М		
Marie Mari	Methyl tertiany hutyl ether	<5.ua/ka	TMOSO					
Persone		10 μg/kg	110003					
Cause	` '	440 //	TMOOO					
Table	Benzene	<10 μg/kg	TIVIOOS					
Marche M		0 "	T11000					
Englance	loluene	<2 µg/kg	1M089					
Mary Network Study Study								
Mary Notice Supple Min Min Supple Min Supple Min Supple Min Supple Supple Min Supple Supple Min Supple	Ethylbenzene	<3 µg/kg	TM089	<3	<3	<3		
No				M	M	M		
Name	m,p-Xylene	<6 µg/kg	TM089	<6	<6	<6		
Marie Mari				M	M	M		
Marie Mari	o-Xylene	<3 µg/kg	TM089	<3		<3		
Sum of defected report years by GC Sum of defected RTEX by GC Sum of sum of defected RTEX by GC Sum of sum of defected RTEX by GC Sum of su	[*							
GC AC μρ/μα TM089 C-4	sum of detected mno xylene by	<9 un/kn	TM089					
sum of detected STEX by CC <24 μg/kg		-5 µg/kg	11003	~	``]		
Mighelias S-CG-CG		204 "	Th4000	-04	-04	-04	-	
Alphatics > CB-CB	sum of detected BTEX by GC	<24 µg/kg	1M089	<24	<24	<24		
Alphatics > CB-CB								
Alphatics > CR - C10	Aliphatics >C5-C6	<10 µg/kg	TM089	<10	<10	<10		
Alphatics > CR - C10								
Alphatics > C10-C12	Aliphatics >C6-C8	<10 µg/kg	TM089	15.5	<10	<10		
Alphatics > C10-C12								
Alphatics > C10-C12	Alinhatics >C8-C10	<10 µa/ka	TM089	72.2	<10	<10		
Alighatics > C12-C16	7 iiiphiddoo - Go G10	l rio pg/kg	1111000	72.2	-10	10		
Alighatics > C12-C16	Aliphatics >C10 C12	<10 ua/ka	TMOOO	205	~10	<10		
Alighatics >C16-C21 < 100 μg/kg TM173 < 100 776 < 100	Aliphatics >C 10-C 12	-10 μg/kg	110009	203	\10	\10		
Alighatics >C16-C21 < 100 μg/kg TM173 < 100 776 < 100	All I. E 040 040	.400 //	T14470	700	4050	.400		
Aliphatics > C21-C35	Aliphatics >C12-C16	<100 µg/kg	1M173	798	1050	<100		
Aliphatics > C21-C35								
Aliphatics > C35-C44	Aliphatics >C16-C21	<100 µg/kg	TM173	<100	776	<100		
Aliphatics > C35-C44								
Total Aliphatics > C12-C44	Aliphatics >C21-C35	<100 µg/kg	TM173	6120	141	11000		
Total Aliphatics > C12-C44								
Total Aliphatics > C12-C44	Aliphatics >C35-C44	<100 µg/kg	TM173	<100	<100	583		
Aromatics >ECS-EC7 <10 μg/kg TM089 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10<	,	" " "						
Aromatics >ECS-EC7 <10 μg/kg TM089 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10<	Total Aliphatics >C12-C44	<100 ua/ka	TM173	6920	1070	11600		
Aromatics >EC7-EC8 <10 μg/kg TM089 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10<	Total Aliphatics 2012-044	100 μg/kg	TIWITI	0320	1370	11000		
Aromatics >EC7-EC8 <10 μg/kg TM089 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10<	A " . FOE FO?	-40 "	T14000	.40	.40	.40		
Aromatics >EC10-EC12 C10 µg/kg TM089 47.7 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	AIOMATICS >EU5-EU7	<10 µg/kg	11/1089	<10	<10	<10		
Aromatics >EC10-EC12 C10 µg/kg TM089 47.7 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1								
Aromatics >EC10-EC12 <10 μg/kg TM089 137 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	Aromatics >EC7-EC8	<10 µg/kg	TM089	<10	<10	<10		
Aromatics >EC10-EC12 <10 μg/kg TM089 137 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1								
Aromatics >EC10-EC12 <10 μg/kg TM089 137 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	Aromatics >EC8-EC10	<10 µg/kg	TM089	47.7	<10	<10		
Aromatics >EC12-EC16 <100 μg/kg TM173 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <1750 <100 <100 <100 <1750 <100 <100 <100 <1750 <100 <100 <100 <100 <1750 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Aromatics >EC12-EC16 <100 μg/kg TM173 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <1750 <100 <100 <100 <1750 <100 <100 <100 <1750 <100 <100 <100 <100 <1750 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <td>Aromatics >EC10-EC12</td> <td><10 µg/kg</td> <td>TM089</td> <td>137</td> <td><10</td> <td><10</td> <td></td> <td></td>	Aromatics >EC10-EC12	<10 µg/kg	TM089	137	<10	<10		
Aromatics > EC16-EC21 < 100 μg/kg TM173 < 100 < 100 1750		''						
Aromatics > EC16-EC21 < 100 μg/kg TM173 < 100 < 100 1750	Aromatics >EC12-EC16	<100 μα/κα	TM173	<100	<100	<100		
Aromatics >EC21-EC35 <100 μg/kg TM173 1530 1030 4860 <th< td=""><td>7.1.011Idilo3 - E012-E010</td><td>- Too pg/kg</td><td>1101173</td><td>100</td><td>100</td><td>100</td><td></td><td></td></th<>	7.1.011Idilo3 - E012-E010	- Too pg/kg	1101173	100	100	100		
Aromatics >EC21-EC35 <100 μg/kg TM173 1530 1030 4860 <th< td=""><td>Aramatica >EC46 EC24</td><td>Z100 //:</td><td>T84470</td><td>×100</td><td>-100</td><td>1750</td><td>1</td><td></td></th<>	Aramatica >EC46 EC24	Z100 //:	T84470	×100	-100	1750	1	
Aromatics >EC35-EC44 <100 μg/kg TM173 5630 3610 1230	AIUMAUCS ZEU 10-EUZ I	× του μg/kg	11011/3	<100	<100	1/50		
Aromatics >EC35-EC44 <100 μg/kg TM173 5630 3610 1230	A	.400 "	711170	1500	1000	1000	 	
Aromatics >EC40-EC44 <100 μg/kg TM173 3330 2190 212	Aromatics >EC21-EC35	<100 µg/kg	ГМ173	1530	1030	4860		
Aromatics >EC40-EC44 <100 μg/kg TM173 3330 2190 212								
Total Aromatics >EC12-EC44 <100 μg/kg TM173 7160 4640 7830	Aromatics >EC35-EC44	<100 µg/kg	TM173	5630	3610	1230		
Total Aromatics >EC12-EC44 <100 μg/kg TM173 7160 4640 7830								
Total Aromatics >EC12-EC44 <100 μg/kg TM173 7160 4640 7830	Aromatics >EC40-EC44	<100 µg/kg	TM173	3330	2190	212		
Total Aliphatics & Aromatics > C5-C44 < 100 μg/kg TM173 14600 6610 19400								
Total Aliphatics & Aromatics > C5-C44 < 100 μg/kg TM173 14600 6610 19400	Total Aromatics >FC12-FC44	<100 µa/ka	TM173	7160	4640	7830		
>C5-C44 C5-C5-C6 C10 μg/kg TM089 C10	. 52417 11 5111 41100 7 20 12-20-74	- του μίζικη	/W1/3	7100	1070	7000		
>C5-C44 C5-C5-C6 C10 μg/kg TM089 C10	Total Aliabatics 9 Aren-4:	Z100 //.	TM4470	14600	6640	10400	+	
GRO > C5-C6		< 100 µg/kg	11011/3	14000	UI ØØ	19400		
GRO > C6-C7							-	
	GRO >C5-C6	<10 µg/kg	TM089	<10	<10	<10		
GRO >C7-C8 < 10 µg/kg TM089 < 10 < 10 < 10	GRO >C6-C7	<10 µg/kg	TM089	<10	<10	<10		
GRO > C7-C8 <10 μg/kg TM089 <10 <10 <10								
	GRO >C7-C8	<10 µg/kg	TM089	<10	<10	<10		

CERTIFICATE OF ANALYSIS

 SDG:
 170930-79
 Client Reference:
 5415
 Report Number:
 427686

 Location:
 Hollybank, Swords
 Order Number:
 73/B/17
 Superseded Report:

TPH CWG (S)							
Results Legend		Customer Sample Ref.	BH02	BH05	BH07		
# ISO17025 accredited. M mCERTS accredited.							1
aq Aqueous / settled sample.		Donth (m)	4.00 4.00	400 400	0.50 0.50		
diss.filt Dissolved / filtered sample.		Depth (m)	1.00 - 1.00	1.00 - 1.00	0.50 - 0.50		
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Sample Type	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)		1
* Subcontracted test. ** % recovery of the surrogate standar	ard to	Date Sampled Sample Time	27/09/2017	27/09/2017	27/09/2017		
check the efficiency of the method	. The	Date Received	30/09/2017	30/09/2017	30/09/2017		
results of individual compounds w	ithin	SDG Ref	170930-79	170930-79	170930-79		
samples aren't corrected for the re	covery	Lab Sample No.(s)	16282588	16282590	16282591		1
(F) Trigger breach confirmed 1-5&•§@ Sample deviation (see appendix)		AGS Reference	10202000	10202000	10202001		1
Component	LOD/Units	Method					1
			404	.40	.40		
GRO >C8-C10	<10 µg/kg	g TM089	121	<10	<10		1
GRO >C10-C12	<10 µg/kg	TM089	342	<10	<10		1
							1
							1
							1
							1
		_					
I							
I							
I							
I							
I							
I							
I							
I	I						
I							
							1
I							
I	I						
I							
		_					
I							
I							
		_					
I							
I							
I							
I							
I							
I							
I							

SDG: 170930-79 Location: Hollybank, Swords Client Reference: Order Number: 5415 73/B/17 Report Number: Superseded Report: 427686

CEN 10:1 SINGLE STAGE LEACHATE TEST

au . = .	ULTS					REF : BS	EN 12457
Client Reference			Site Location		Hollyk	oank, Swords	
Mass Sample taken (kg)	0.103		Natural Moistur	e Content (%)	14.5		
Mass of dry sample (kg)	0.090		Dry Matter Con		87.4		
Particle Size <4mm	>95%		Dry matter com	terre (70)	07.1		
Particle Size \4min	~93 % ————————————————————————————————————						
Case					Land	fill Waste Acce	ptance
SDG	170930-79					Criteria Limits	;
Lab Sample Number(s)	16282588						
Sampled Date	27-Sep-2017					Stable	
Customer Sample Ref.	BH02				Inert Waste	Non-reactive Hazardous Waste	Hazardous
Depth (m)	1.00 - 1.00				Landfill	in Non- Hazardous	Waste Landf
Solid Waste Analysis	Result					Landfill	
Total Organic Carbon (%)	0.231				3	5	6
Loss on Ignition (%)	1.4				-	-	10
Sum of BTEX (mg/kg)	<0.024				6	-	-
Sum of 7 PCBs (mg/kg)	<0.021				1	-	-
Mineral Oil (mg/kg)	22.9				500	-	-
PAH Sum of 17 (mg/kg)	-				-	-	-
pH (pH Units)	-				-	-	-
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)	-				-	-	-
Eluate Analysis		0:1 eluate (mg/l)	712	en leached (mg/kg)		ues for compliance lea BS EN 12457-3 at L/S	
	Result	Limit of Detection	Result	Limit of Detection			
Arsenic	Result <0.0005	Limit of Detection <0.0005	Result <0.005	Limit of Detection	using I	BS EN 12457-3 at L/S	10 l/kg 25
Arsenic Barium	Result <0.0005 0.00397	<pre>Limit of Detection <0.0005 <0.0002</pre>	Result <0.005 0.0397	Limit of Detection	0.5 20	2 100	25 300
Arsenic Barium Cadmium	Result <0.0005 0.00397 <0.00008	Limit of Detection <0.0005 <0.0002 <0.0008	Result <0.005 0.0397 <0.0008	Limit of Detection <0.005 <0.002 <0.0008	0.5 20 0.04	2 100 1	25 300 5
Arsenic Barium Cadmium Chromium	Result <0.0005 0.00397 <0.00008 <0.001	Limit of Detection <0.0005 <0.0002 <0.0008 <0.001	Result <0.005 0.0397 <0.0008 <0.01	<pre>Limit of Detection <0.005 <0.002 <0.0008 <0.01</pre>	0.5 20 0.04 0.5	2 100 1 10	25 300 5 70
Arsenic Barium Cadmium Chromium Copper	Result <0.0005 0.00397 <0.00008 <0.001 <0.0003	Limit of Detection <0.0005 <0.0002 <0.0008 <0.001 <0.0003	Result <0.005 0.0397 <0.0008 <0.01 <0.003	<pre>Limit of Detection <0.005 <0.002 <0.0008 <0.01 <0.003</pre>	0.5 20 0.04 0.5 2	2 100 1 10 50	25 300 5 70
Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF)	Result <0.0005 0.00397 <0.00008 <0.001 <0.0003 <0.0003	Limit of Detection	Result <0.005 0.0397 <0.0008 <0.01 <0.003 <0.0001	Limit of Detection <0.005 <0.002 <0.008 <0.01 <0.003 <0.0001	0.5 20 0.04 0.5 2 0.01	2 100 1 100 50 0.2	25 300 5 70 100
Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum	Result <0.0005 0.00397 <0.00008 <0.0001 <0.0003 <0.00001 0.000333	Limit of Detection	Result <0.005 0.0397 <0.0008 <0.01 <0.003 <0.0001 0.0333	Limit of Detection	0.5 20 0.04 0.5 2 0.01	2 100 1 10 50 0.2	25 300 5 70 100 2
Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel	Result <0.0005 0.00397 <0.00008 <0.0001 <0.0003 <0.00001 0.00333 <0.0004	Limit of Detection	Result <0.005 0.0397 <0.0008 <0.01 <0.003 <0.0001 0.0333 <0.004	Limit of Detection	0.5 20 0.04 0.5 2 0.01 0.5 0.4	2 100 1 10 50 0.2 10 10 10	25 300 5 70 100 2 30 40
Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel	Result <0.0005 0.00397 <0.00008 <0.0001 <0.0003 <0.00001 0.00333 <0.0004 <0.0002	Limit of Detection	Result	Limit of Detection	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5	2 100 1 10 50 0.2 10 10 10 10 10 10 10 10 10 10 10 10 10	25 300 5 70 100 2 30 40
Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony	Result <0.0005 0.00397 <0.00008 <0.0001 <0.0003 <0.00001 0.00333 <0.0004 <0.0002	Limit of Detection	Result <0.005	Limit of Detection	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5	2 100 1 10 50 0.2 10 10 10 10 10 10 10 10 10 10 10 10 10	25 300 5 70 100 2 30 40 50
Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium	Result <0.0005 0.00397 <0.00008 <0.0001 <0.0003 <0.00001 0.00333 <0.0004 <0.0002 0.000229 <0.0005	Limit of Detection	Result	Limit of Detection	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06	2 100 1 10 50 0.2 10 10 10 10 10 10 10 10 10 10 10 10 10	25 300 5 70 100 2 30 40 50 5
Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc	Result <0.0005 0.00397 <0.00008 <0.0001 <0.0003 <0.00001 0.00333 <0.0004 <0.0002 0.00029 <0.0005 <0.001	Limit of Detection	Result	Limit of Detection	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1	2 100 1 100 50 0.2 10 10 10 10 50 0.5 50	25 300 5 70 100 2 30 40 50 5 7
Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc Chloride	Result <0.0005 0.00397 <0.00008 <0.0001 <0.0003 <0.00001 0.00333 <0.0004 <0.0002 0.00029 <0.0005 <0.0001 <2	Limit of Detection	Result	Limit of Detection	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06	2 100 1 100 50 0.2 10 10 10 10 10 50 0.5 50	25 300 5 70 100 2 30 40 50 5 7 200 25000
Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride	Result <0.0005 0.00397 <0.00008 <0.0001 <0.0003 <0.00001 0.00333 <0.0004 <0.0002 0.00029 <0.0005 <0.001	Limit of Detection	Result	Limit of Detection	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800	2 100 1 100 50 0.2 10 10 10 10 50 0.5 50	25 300 5 70 100 2 30 40 50 5 7
Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride Sulphate (soluble)	Result <0.0005 0.00397 <0.00008 <0.0001 <0.0003 <0.00001 0.00333 <0.0004 <0.0002 0.000229 <0.0005 <0.0001 <2 <0.5 <2	Limit of Detection	Result	Limit of Detection	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800	2 100 1 100 50 0.2 10 10 10 0.7 0.5 50 1500 1500	25 300 5 70 100 2 30 40 50 5 7 200 25000 5000
Eluate Analysis Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride Sulphate (soluble) Total Dissolved Solids Total Monohydric Phenols (W)	Result <0.0005 0.00397 <0.00008 <0.0001 <0.0003 <0.00001 0.00333 <0.0004 <0.0002 0.000229 <0.0005 <0.0001 <2 <0.001	Limit of Detection	Result	Limit of Detection	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800 10	2 100 1 100 50 0.2 10 10 10 0.7 0.5 50 1500	25 300 5 70 100 2 30 40 50 5 7 200 25000

Leach Test Information

Date Prepared	04-Oct-2017
pH (pH Units)	8.79
Conductivity (µS/cm)	62.50
Temperature (°C)	18.10
Volume Leachant (Litres)	0.887

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALS Environmental cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

10/10/2017 16:09:01

Customer Sample Ref.

170930-79 SDG: Location: Hollybank, Swords

BH05

5415 Client Reference: Order Number: 73/B/17

Report Number: Superseded Report:

Inert Waste

Landfill

427686

Non-reactive

Hazardous Waste

in Non-

Hazardous

Waste Landfill

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RES	ULTS		REF : BS EN 12457/2
Client Reference		Site Location	Hollybank, Swords
Mass Sample taken (kg)	0.114	Natural Moisture Content (%)	26.6
Mass of dry sample (kg)	0.090	Dry Matter Content (%)	79
Particle Size <4mm	>95%		
Case			Landfill Waste Acceptance
SDG	170930-79		Criteria Limits
Lab Sample Number(s)	16282590		
Sampled Date	27-Sep-2017		Stable Non-reactive

oth (m)	1.00 - 1.00		In Non- Hazardous Landfill
Waste Analysis	Result		
Organic Carbon (%)	0.509	3	5
ss on Ignition (%)	3.06	-	-
n of BTEX (mg/kg)	<0.024	6	-
m of 7 PCBs (mg/kg)	<0.021	1	-
ineral Oil (mg/kg)	15.3	500	-
AH Sum of 17 (mg/kg)	-	-	-
H (pH Units)	-	-	-
NC to pH 6 (mol/kg)	-	-	-
NC to pH 4 (mol/kg)	-	-	-

Eluate Analysis	C ₂ Conc ⁿ in 1	.0:1 eluate (mg/l)	A ₂ 10:1 conc	ⁿ leached (mg/kg)		s for compliance lea	-
	Result	Limit of Detection	Result	Limit of Detection	, ,	,	. , ,
Arsenic	<0.0005	<0.0005	<0.005	<0.005	0.5	2	25
Barium	0.00454	<0.0002	0.0454	<0.002	20	100	300
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5
Chromium	<0.001	<0.001	<0.01	<0.01	0.5	10	70
Copper	<0.0003	<0.0003	<0.003	<0.003	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2
Molybdenum	0.00368	<0.0005	0.0368	<0.005	0.5	10	30
Nickel	<0.0004	<0.0004	<0.004	<0.004	0.4	10	40
Lead	<0.0002	<0.0002	<0.002	<0.002	0.5	10	50
Antimony	0.000178	<0.0001	0.00178	<0.001	0.06	0.7	5
Selenium	<0.0005	<0.0005	<0.005	<0.005	0.1	0.5	7
Zinc	<0.001	<0.001	<0.01	<0.01	4	50	200
Chloride	<2	<2	<20	<20	800	15000	25000
Fluoride	<0.5	<0.5	<5	<5	10	150	500
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000
Total Dissolved Solids	79.9	<10	799	<100	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Dissolved Organic Carbon	<3	<3	<30	<30	500	800	1000

Leach Test Information

Date Prepared	04-Oct-2017							
pH (pH Units)	8.11							
Conductivity (µS/cm)	98.00							
Temperature (°C)	18.30							
Volume Leachant (Litres)	0.876							

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALS Environmental cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

10/10/2017 16:09:01

170930-79

16282591

SDG: 170930-79 Location: Hollybank, Swords Client Reference: Order Number: 5415 73/B/17 Report Number: Superseded Report: 427686

Criteria Limits

CEN 10:1 SINGLE STAGE LEACHATE TEST

Case			Landfill Waste Acceptance
Particle Size <4mm	>95%		
Mass of dry sample (kg)	0.090	Dry Matter Content (%)	82.6
Mass Sample taken (kg)	0.109	Natural Moisture Content (%)	21.1
Client Reference		Site Location	Hollybank, Swords
WAC ANALYTICAL RES	ULTS		REF : BS EN 12457/2

Stable 27-Sep-2017 **Sampled Date** Non-reactive Inert Waste Hazardous BH07 Hazardous Waste **Customer Sample Ref.** Landfill Waste Landfill in Non-Depth (m) 0.50 - 0.50Hazardous Landfill **Solid Waste Analysis** Result 0.654 Total Organic Carbon (%) Loss on Ignition (%) 3.52 6 Sum of BTEX (mg/kg) < 0.024 Sum of 7 PCBs (mg/kg) <0.021 25.6 Mineral Oil (mg/kg) 500 PAH Sum of 17 (mg/kg) pH (pH Units)

Eluate Analysis	C ₂ Conc ⁿ in 1	C ₂ Conc ⁿ in 10:1 eluate (mg/l)		A2 10:1 conc ⁿ leached (mg/kg)		Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	Result	Limit of Detection	Result	Limit of Detection			, ,	
Arsenic	<0.0005	<0.0005	<0.005	<0.005	0.5	2	25	
Barium	0.00348	<0.0002	0.0348	<0.002	20	100	300	
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5	
Chromium	<0.001	<0.001	<0.01	<0.01	0.5	10	70	
Copper	0.000656	<0.0003	0.00656	<0.003	2	50	100	
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2	
Molybdenum	0.00116	<0.0005	0.0116	<0.005	0.5	10	30	
Nickel	0.000527	<0.0004	0.00527	<0.004	0.4	10	40	
Lead	<0.0002	<0.0002	<0.002	<0.002	0.5	10	50	
Antimony	0.000282	<0.0001	0.00282	<0.001	0.06	0.7	5	
Selenium	<0.0005	<0.0005	<0.005	<0.005	0.1	0.5	7	
Zinc	0.00124	<0.001	0.0124	<0.01	4	50	200	
Chloride	<2	<2	<20	<20	800	15000	25000	
Fluoride	<0.5	<0.5	<5	<5	10	150	500	
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000	
Total Dissolved Solids	41.3	<10	413	<100	4000	60000	100000	
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-	
Dissolved Organic Carbon	<3	<3	<30	<30	500	800	1000	

Leach Test Information

SDG

Lab Sample Number(s)

ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)

Date Prepared	04-Oct-2017			
pH (pH Units)	8.65			
Conductivity (µS/cm)	48.90			
Temperature (°C)	16.50			
Volume Leachant (Litres)	0.881			

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALS Environmental cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

CERTIFICATE OF ANALYSIS

 SDG:
 170930-79
 Client Reference:
 5415
 Report Number:
 427686

 Location:
 Hollybank, Swords
 Order Number:
 73/B/17
 Superseded Report:

Table of Results - Appendix

Table of Results - Appendix						
Method No	Reference	Description	Wet/Dry Sample ¹	Surrogate Corrected		
PM001		Preparation of Samples for Metals Analysis	Julii pio	331133134		
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material				
PM115		Leaching Procedure for CEN One Stage Leach Test 2:1 & 10:1 1 Step				
TM018	BS 1377: Part 3 1990	Determination of Loss on Ignition				
TM061	Method for the Determination of EPH, Massachusetts Dept. of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)				
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)				
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water				
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser				
TM123	BS 2690: Part 121:1981	The Determination of Total Dissolved Solids in Water				
TM132	In - house Method	ELTRA CS800 Operators Guide				
TM151	Method 3500D, AWWA/APHA, 20th Ed., 1999	Determination of Hexavalent Chromium using Kone analyser				
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS				
TM168	EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils				
TM173	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	Determination of Speciated Extractable Petroleum Hydrocarbons in Soils by GC-FID				
TM181	US EPA Method 6010B	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES				
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry				
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers				
TM218	Determination of PAH by GCMS Microwave extraction	The determination of PAH in soil samples by microwave extraction and GC-MS				
TM259	by HPLC	Determination of Phenols in Waters and Leachates by HPLC				

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Environmental Hawarden (Method codes TM) or ALS Environmental Aberdeen (Method codes S).

CERTIFICATE OF ANALYSIS

SDG: 170930-79 Location: Hollybank, Swords Client Reference: Order Number: 5415 73/B/17 Report Number: Superseded Report: 427686

Test Completion Dates

Lab Sample No(s)	16282588	16282590	16282591
Customer Sample Ref.	BH02	BH05	BH07
·			
AGS Ref.			
Depth	1.00 - 1.00	1.00 - 1.00	0.50 - 0.50
Туре	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)
Anions by Kone (w)	10-Oct-2017	10-Oct-2017	10-Oct-2017
CEN 10:1 Leachate (1 Stage)	04-Oct-2017	04-Oct-2017	04-Oct-2017
CEN Readings	05-Oct-2017	05-Oct-2017	05-Oct-2017
Chromium III	10-Oct-2017	10-Oct-2017	10-Oct-2017
Dissolved Metals by ICP-MS	10-Oct-2017	10-Oct-2017	10-Oct-2017
Dissolved Organic/Inorganic Carbon	06-Oct-2017	06-Oct-2017	06-Oct-2017
EPH CWG (Aliphatic) GC (S)	09-Oct-2017	09-Oct-2017	09-Oct-2017
EPH CWG (Aromatic) GC (S)	09-Oct-2017	09-Oct-2017	09-Oct-2017
Fluoride	06-Oct-2017	06-Oct-2017	06-Oct-2017
GRO by GC-FID (S)	10-Oct-2017	10-Oct-2017	10-Oct-2017
Hexavalent Chromium (s)	09-Oct-2017	09-Oct-2017	09-Oct-2017
Loss on Ignition in soils	10-Oct-2017	10-Oct-2017	10-Oct-2017
Mercury Dissolved	09-Oct-2017	09-Oct-2017	09-Oct-2017
Metals in solid samples by OES	10-Oct-2017	10-Oct-2017	10-Oct-2017
Mineral Oil	10-Oct-2017	10-Oct-2017	10-Oct-2017
PAH by GCMS	10-Oct-2017	10-Oct-2017	10-Oct-2017
PCBs by GCMS	09-Oct-2017	09-Oct-2017	09-Oct-2017
Phenols by HPLC (W)	09-Oct-2017	09-Oct-2017	09-Oct-2017
Sample description	03-Oct-2017	03-Oct-2017	03-Oct-2017
Total Dissolved Solids on Leachates	06-Oct-2017	06-Oct-2017	06-Oct-2017
Total Organic Carbon	10-Oct-2017	10-Oct-2017	10-Oct-2017
TPH CWG GC (S)	10-Oct-2017	10-Oct-2017	10-Oct-2017

SDG: 170930-79 Location: Hollybank, Swords Client Reference: Order Number: 5415 73/B/17 Report Number: Superseded Report: 427686

Appendix

General

- 1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.
- 7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt However, the integrity of the data may be compromised.
- 9. NDP No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals total metals must be requested separately.
- 11. Results relate only to the items tested
- 12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
- 13. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%, they are generally wider for volatiles analysis, 50-150%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
- 14. **Product analyses** Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).
- 17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

- 21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

 Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
- 24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

Sample Deviations

If a sample is classed as deviated then the associated results may be compromised

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Holding time exceeded before sample received
5	Samples exceeded holding time before presevation was performed
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions.

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbe stos Type	Common Name	
Chrysof le	White Asbests	
Amosite	Brow n Asbestos	
Cro d dolite	Blue Asbe stos	
Fibrous Act nolite	-	
Fib to us Anthop hyll ite	-	
Fibrous Tremolite	-	

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.


The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Appendix 4 Survey Data

Site Survey

Landin	Irish National Grid		Laval	Irish Transverse Mercator			
Location -	Easting	Northing	Level	Easting	Northing		
Cable Percussion Boreholes							
BH01	717608.793	748363.439	7.25	317683.411	248340.257		
BH02	717663.420	748294.172	9.42	317738.050	248270.975		
BH03	717845.956	748256.318	5.94	317920.625	248233.114		
BH04	717631.220	748202.211	9.92	317705.844	248178.994		
BH05	717822.927	748206.474	7.67	317897.592	248183.259		
BH06	717849.380	748120.667	13.46	317924.052	248097.434		
BH07	717714.458	748040.428	13.32	317789.102	248017.177		
BH08	717873.791	748077.087	12.51	317948.468	248053.845		
		Tria	l Pits				
TP01	717593.680	748316.185	8.51	317668.295	248292.992		
TP02	717750.929	748074.592	14.54	317825.580	248051.348		
TP03	717726.797	748227.917	9.22	317801.441	248204.706		
TP04	717802.210	748276.115	6.04	317876.870	248252.915		
TP05	717810.993	748222.897	7.45	317885.655	248199.686		
TP06	717625.987	748161.701	10.93	317700.611	248138.475		
TP07	717663.978	748112.404	14.07	317738.610	248089.168		
TP08	717698.097	748155.594	10.16	317772.736	248132.367		
TP09	717785.379	748160.575	9.97	317860.037	248137.350		
TP10	717873.933	748147.926	12.44	317948.610	248124.699		
TP11	717743.796	748104.831	14.27	317818.445	248081.594		
TP12	717812.038	748070.366	13.53	317886.702	248047.122		
TP13	717707.802	747999.822	13.70	317782.445	247976.562		
TP14	717764.277	748021.529	13.61	317838.931	247998.274		
TP15	717828.563	748028.279	13.12	317903.231	248005.026		
TP16	717879.885	748022.537	12.57	317954.564	247999.283		
TP17	717851.855	747971.646	15.23	317926.529	247948.381		

